
Lecture Notes
Nonlinear Optimization

Spring Semester 2023

Roland Herzog∗

2023-05-07

∗
Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany

(roland.herzog@iwr.uni-heidelberg.de, https://scoop.iwr.uni-heidelberg.de/team/roland-herzog).

mailto:roland.herzog@iwr.uni-heidelberg.de
https://scoop.iwr.uni-heidelberg.de/team/roland-herzog

R. Herzog cbn

These lecture notes are partly based on content from the books Nocedal, Wright, 2006; Ulbrich, Ulbrich,

2012.

Material for 14 weeks.

Please send comments to roland.herzog@iwr.uni-heidelberg.de.

2 https://tinyurl.com/scoop-nlo 2023-05-07

mailto:roland.herzog@iwr.uni-heidelberg.de
https://tinyurl.com/scoop-nlo

Contents

0 Introduction 5

§ 1 Elementary Notions 5

§ 2 Notation and Background Material 7

§ 2.1 Vector Norms 7

§ 2.2 Matrix Norms 8

§ 2.3 Eigenvalues and Eigenvectors 8

§ 2.4 Kantorovich Inequality 9

§ 2.5 Functions and Derivatives 11

§ 2.6 Taylor’s Theorem 13

§ 2.7 Convergence Rates 13

§ 2.8 Convexity 14

§ 2.9 Miscellanea 16

1 Numerical Techniques for Unconstrained Optimization Problems 18

§ 3 Optimality Conditions 18

§ 4 Minimization of Quadratic Functions 20

§ 4.1 Direction of Steepest Descent 23

§ 4.2 Gradient Descent Method with Cauchy Step Sizes 24

§ 4.3 Gradient Descent Method with Constant Step Sizes 31

§ 4.4 Gradient Descent Method with Other Step Size Rules 34

§ 4.5 Gradient Descent Method as Discretized Gradient Flow 34

§ 4.6 Conjugate Gradient Method 35

§ 5 Line Search Methods for Nonlinear Unconstrained Problems 48

§ 5.1 A Generic Descent Method 49

§ 5.2 Step Size Strategies 55

§ 5.3 Gradient Descent Method 69

2 Theory for Constrained Optimization Problems 73

3 Numerical Techniques for Constrained Optimization Problems 74

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

R. Herzog cbn

4 Differentiation Techniques 75

4 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

Chapter 0 Introduction

§ 1 Elementary Notions

Mathematical optimization is about solving problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ Ω (objective function)
subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq (inequality constraints)

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq. (equality constraints)

 (1.1)

Ω ⊆ R𝑛 is the basic set and 𝑥 is the optimization variable or simply the variable of the problem.

We will assume that

• the functions 𝑓 , 𝑔𝑖 , ℎ 𝑗 : R
𝑛 → R are sufficiently smooth (𝐶2

functions),

• we have a finite number (possibly zero) of inequality and equality constraints, i. e., 𝑛ineq and 𝑛eq
are in N0.

We will assume Ω = R𝑛 , i. e., we consider only continuous optimization problems and without

implicit constraints.

Definition 1.1 (Elementary notions).
(𝑖) The set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

associated with an optimization problem (1.1) is termed the feasible set. Any 𝑥 ∈ 𝐹 is termed a
feasible point.

(𝑖𝑖) The inequality 𝑔𝑖 (𝑥) ≤ 0 is called active at a point 𝑥 if 𝑔𝑖 (𝑥) = 0 holds. It is called inactive in
case 𝑔𝑖 (𝑥) < 0. It is called violated if 𝑔𝑖 (𝑥) > 0 holds.

(𝑖𝑖𝑖) The value
𝑓 ∗ B inf {𝑓 (𝑥) | 𝑥 ∈ 𝐹 }

is termed the infimal value of problem (1.1).

(𝑖𝑣) In case 𝐹 = ∅, the problem (1.1) is said to be infeasible. In that case, we have 𝑓 ∗ = +∞. In case
𝑓 ∗ = −∞, the problem is said to be unbounded.

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑣) A point 𝑥∗ ∈ 𝐹 is a global minimizer or globally optimal solution of (1.1) if

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹

holds. Equivalently, 𝑥∗ ∈ 𝐹 is a global minimizer if 𝑓 (𝑥∗) = 𝑓 ∗ holds. In this case, the infimal
value 𝑓 ∗ is also referred to as the global minimum or globally optimal value of (1.1).

(𝑣𝑖) A global minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹, 𝑥 ≠ 𝑥∗.

(𝑣𝑖𝑖) A point 𝑥∗ ∈ 𝐹 is a local minimizer or locally optimal solution of (1.1) if there exists a
neighborhood𝑈 (𝑥∗) such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗)

holds. In this case, 𝑓 (𝑥∗) is also referred to as a local minimum or a locally optimal value of
(1.1).

(𝑣𝑖𝑖𝑖) A local minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗), 𝑥 ≠ 𝑥∗.

(𝑖𝑥) An optimization problem (1.1) is solvable if it has at least one global minimizer, i. e., if the optimal
value is attained at some point. Otherwise, the problem is unsolvable.

Definition 1.2 (Classification of optimization problems).
(𝑖) An optimization problem (1.1) is said to be unconstrained in case 𝑛ineq = 𝑛eq = 0. Otherwise, it is

said to be equality constrained and/or inequality constrained.

(𝑖𝑖) Inequality constraints of the simple kind

ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛

with bounds ℓ𝑖 ∈ R ∪ {−∞} and 𝑢𝑖 ∈ R ∪ {∞} are called bound constraints.

(𝑖𝑖𝑖) When 𝑓 is a quadratic polynomial and 𝑔 and ℎ are affine linear functions, then (1.1) is called a
quadratic optimization problem or a quadratic program (QP).

(𝑖𝑣) In the general case, i. e., when (1.1) is not a quadratic program, we refer to (1.1) as a nonlinear
optimization problem or nonlinear program (NLP).

The emphasis in this class is on numerical techniques for unconstrained and constrained nonlinear

programs. We will see that fast algorithms take into account the optimality conditions of the respective

problem. Therefore we will also discuss optimality conditions.

6 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We will begin in Chapter 1 with algorithms for unconstrained optimization. Some of the content was

already part of the class Grundlagen der Optimierung (Herzog, 2022), but we will revisit the material

in more detail here. The theory for constrained problems is relatively involved and merits its own

chapter (Chapter 2). We will subsequently discuss major algorithmic ideas for constrained problems in

Chapter 3. Finally, we will review in Chapter 4 some computer-aided techniques to obtain derivatives

of functions, which the algorithms under consideration generally require.

Throughout the class, we will emphasize the connections between optimization and numerical linear

algebra.

§ 2 Notation and Background Material

In these lecture notes we use color codes for definitions and highlights. The natural numbers are

N = {1, 2, . . .}, and we write N0 for N∪ {0}. We denote open intervals by (𝑎, 𝑏) and closed intervals by
[𝑎, 𝑏]. We usually use Latin capital letters for matrices, Latin lowercase letters for vectors and Greek or

Latin lowercase letters for scalars. We use Id for the identity matrix. We distinguish the vector space

R𝑛 of column vectors from the vector space R𝑛 of row vectors.

§ 2.1 Vector Norms

An inner product (·, ·) onR𝑛 is a symmetric and positive definite bilinear form, i. e., a mapR𝑛×R𝑛 → R
with the following properties:

(𝑥, 𝑦) = (𝑦, 𝑥) (symmetry) (2.1a)

(𝛼1 𝑥1 + 𝛼2 𝑥2, 𝑦) = 𝛼1 (𝑥1, 𝑦) + 𝛼2 (𝑥2, 𝑦) (bilinearity part 1) (2.1b)

(𝑥, 𝛽1 𝑦1 + 𝛽2 𝑦2) = 𝛽1 (𝑥, 𝑦1) + 𝛽2 (𝑥, 𝑦2) (bilinearity part 2) (2.1c)

(𝑥, 𝑥) ≥ 0 and 𝑥 ≠ 0⇒ (𝑥, 𝑥) > 0 (positive definiteness) (2.1d)

for all 𝑥, 𝑥1, 𝑥2, 𝑦, 𝑦1, 𝑦2 ∈ R𝑛 and all 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ R.

Inner products on R𝑛 are in one-to-one correspondence with symmetric and positive definite (s. p. d.)

𝑛 × 𝑛 matrices. That is, every s. p. d. matrix𝑀 ∈ R𝑛×𝑛 induces an inner product

(𝑥, 𝑦)𝑀 B 𝑥ᵀ𝑀 𝑦,

and, on the other hand, every inner product (·, ·) on R𝑛 is induced by an s. p. d. matrix𝑀 . For simplicity,

we will refer to𝑀 itself as the inner product it induces, or use the term “𝑀-inner product”.

Every inner product (·, ·)𝑀 induces a norm
1
by way of

∥𝑥 ∥𝑀 B
√
𝑥ᵀ𝑀 𝑥. (2.2)

In particular, the Euclidean inner product 𝑥ᵀ𝑦 corresponds to the identity matrix𝑀 = Id, and we denote

the associated norm by ∥𝑥 ∥. We won’t be writing ⟨𝑥 , 𝑦⟩ or 𝑥 · 𝑦 for the Euclidean inner product.

1
We are only considering norms induced by inner products.

https://tinyurl.com/scoop-nlo 7

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 2.2 Matrix Norms

A matrix 𝐴 ∈ R𝑚×𝑛 represents a linear map by way of R𝑛 ∋ 𝑥 ↦→ 𝐴𝑥 ∈ R𝑚 . When R𝑛 is equipped

with the𝑀1-inner product and R
𝑚
is equipped with the𝑀2-inner product, we define thematrix norm

or operator norm of 𝐴 as

∥𝐴∥𝑀2←𝑀1
B max

𝑥≠0

∥𝐴𝑥 ∥𝑀2

∥𝑥 ∥𝑀1

. (2.3)

When𝑀1 and𝑀2 are both the Euclidean inner products, ∥𝐴∥Id←Id or simply ∥𝐴∥ is the largest singular
value of𝐴. In the general case, ∥𝐴∥𝑀2←𝑀1

is the largest singular value of a suitably generalized singular

value decomposition.

§ 2.3 Eigenvalues and Eigenvectors

Every symmetric matrix 𝐴 ∈ R𝑛×𝑛 possesses an orthogonal transformation to a diagonal matrix,

known as eigen decomposition or spectral decomposition. That is, there exists an orthogonal

matrix 𝑉 ∈ R𝑛×𝑛 and a diagonal matrix Λ ∈ R𝑛×𝑛 , such that

𝐴𝑉 = 𝑉Λ, i. e., 𝐴 = 𝑉Λ𝑉 ᵀ (2.4)

holds. The diagonal of Λ contains the eigenvalues 𝜆𝑖 , and the columns 𝑣𝑖 of 𝑉 are the corresponding

eigenvectors. This decomposition yields the complete solution to the eigenvalue problem

𝐴𝑣 = 𝜆 𝑣. (2.5)

We also work with the generalized eigenvalue problem

𝐴𝑣 = 𝜆𝑀 𝑣 (2.6)

for the particular case where 𝐴 is still symmetric and the second matrix 𝑀 ∈ R𝑛×𝑛 is s. p. d. There

exists an analogous generalized spectral decomposition

𝐴𝑉 = 𝑀𝑉Λ, i. e., 𝐴 = 𝑀𝑉Λ𝑉 ᵀ𝑀, (2.7)

where now 𝑉 is orthogonal w.r.t. the 𝑀 inner product, i. e., 𝑉 ᵀ𝑀𝑉 = Id holds. This implies 𝑉𝑉 ᵀ =
𝑀−1. We also refer to the solutions of (2.6) as the eigenvalues/eigenvectors of 𝐴 w.r.t. 𝑀 or

eigenvalues/eigenvectors of the pair (𝐴;𝑀).

In view of the Courant-Fischer theorem for (generalized) eigenvalues of symmetric matrices, the

generalized Rayleigh quotient of 𝐴 w.r.t. 𝑀 satisfies

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑥

𝑥ᵀ𝑀 𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.8)

The eigenvectors associated with the smallest and largest generalized eigenvalues 𝜆min(𝐴;𝑀) and
𝜆max(𝐴;𝑀) satisfy the first respectively the second inequality with equality.

8 https://tinyurl.com/scoop-nlo 2023-05-07

https://en.wikipedia.org/wiki/Min-max_theorem
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Notice that the generalized eigenvalue problems (2.6) and

𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 (2.9a)

as well as

𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 (2.9b)

have the same eigenvalues and eigenvectors (provided in case of (2.9a) that 𝐴 is not only symmetric

but also invertible) since𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 ⇔ 𝑣 = 𝜆𝐴−1𝑀 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 and 𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 ⇔
𝑀−1𝐴𝑣 = 𝜆 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 . Consequently, we obtain the following estimate for the generalized

Rayleigh quotients associated with (2.9):

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝑀 𝑥

𝑥ᵀ𝑀𝐴−1𝑀 𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0, (2.10a)

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑀−1𝐴𝑥

𝑥ᵀ𝐴𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.10b)

Every s. p. d. matrix 𝐴 ∈ R𝑛×𝑛 possesses a unique s. p. d. matrix square root 𝐴1/2
. When 𝐴 = 𝑉Λ𝑉 ᵀ

is a spectral decomposition of 𝐴 with orthogonal 𝑉 , then

𝐴1/2 = 𝑉Λ1/2𝑉 ᵀ (2.11)

holds. Herein, Λ1/2
is the elementwise square root of the diagonal matrix Λ.

§ 2.4 Kantorovich Inequality

Suppose that 𝐴 is an s. p. d. matrix. Let us denote the extremal eigenvalues by 𝛼 B 𝜆min(𝐴) and
𝛽 B 𝜆max(𝐴). Moreover, since 𝐴 is s. p. d., it follows that its condition number2 is given by

𝜅 B
𝛽

𝛼
. (2.12)

Notice that a condition number always satisfies 𝜅 ≥ 1. From the Rayleigh quotient estimate (2.8) (with

𝑀 = Id), we have

𝑥ᵀ𝐴𝑥

∥𝑥 ∥2 ≤ 𝛽.

Moreover, since the eigenvalues of 𝐴−1 are the reciprocals of those of 𝐴, we have 𝜆max(𝐴−1) =

1/𝜆min(𝐴) = 1/𝛼 and thus

𝑥ᵀ𝐴−1 𝑥

∥𝑥 ∥2 ≤ 1

𝛼
.

These inequalities hold for all 𝑥 ∈ R𝑛 \ {0}, and they imply

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1 𝑥)
∥𝑥 ∥4 ≤ 𝛽

𝛼
.

This estimate, however, is not sharp in general. (Quiz 2.1: Can you explain why not?) The Kantorovich

inequality improves this estimate.

2
Generally, the condition of an invertible matrix 𝐴 is 𝜅 = ∥𝐴∥ ∥𝐴−1∥. This is equal to 𝜎max (𝐴)/𝜎min (𝐴) with the extremal

singular values 𝜎max (𝐴) and 𝜎min (𝐴). Since 𝐴 is symmetric, its singular values are just the absolute values of its

eigenvalues, and since 𝐴 is also positive definite, we have 𝜎max (𝐴) = 𝜆max (𝐴) = 𝛽 and 𝜎min (𝐴) = 𝜆min (𝐴) = 𝛼 .

https://tinyurl.com/scoop-nlo 9

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 2.1 (Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d., 𝛼 B 𝜆min(𝐴) and 𝛽 B 𝜆max(𝐴)
are its extremal eigenvalues, and 𝜅 = 𝛽/𝛼 is its condition number. Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝛼 + 𝛽)

2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.13a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝜅 + 1)

2

4𝜅
≤ 𝜅. (2.13b)

Proof. The Cauchy-Schwarz inequality implies

∥𝑥 ∥2 = 𝑥ᵀ𝑥 = 𝑥ᵀ𝐴−1/2𝐴1/2𝑥 ≤ ∥𝐴−1/2𝑥 ∥ ∥𝐴1/2𝑥 ∥ .

By squaring this, we obtain

∥𝑥 ∥4 ≤ ∥𝐴−1/2𝑥 ∥2 ∥𝐴1/2𝑥 ∥2 = (𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)

and thus the lower bound in (2.13).

From here on, the proof follows Anderson, 1971, as reproduced in the Master’s thesis Alpargu, 1996,

Section 1.2.2. Let 𝜆1, . . . , 𝜆𝑛 > 0 be the eigenvalues of 𝐴 (in any order), and let 𝑣1, . . . , 𝑣𝑛 be an

orthonormal set of associated eigenvectors. We represent 𝑥 ∈ R𝑛 \ {0} as 𝑥 =
∑𝑛
𝑖=1 𝛾𝑖 𝑣𝑖 . Suppose,

w.l.o.g., that ∥𝑥 ∥2 = ∑𝑛
𝑖=1 𝛾

2

𝑖 = 1 holds. Inserting the representation of 𝑥 yields

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 =

[𝑛∑︁
𝑖=1

𝜆𝑖 𝛾
2

𝑖

]
︸ ︷︷ ︸

=E(𝑇)

[𝑛∑︁
𝑖=1

1

𝜆𝑖
𝛾2𝑖

]
︸ ︷︷ ︸

=E(1/𝑇)

.

It is helpful to think about the two factors on the right-hand side as expected values of a “random

variable” 𝑇 and 1/𝑇 , respectively. Here 𝑇 takes the values 𝜆𝑖 ∈ [𝛼, 𝛽] with “probability” 𝛾2𝑖 . For any

0 < 𝛼 ≤ 𝑇 ≤ 𝛽 , we can estimate

0 ≤ (𝛽 −𝑇) (𝑇 − 𝛼) = (𝛽 + 𝛼 −𝑇)𝑇 − 𝛼 𝛽,

and thus

1

𝑇
≤ 𝛼 + 𝛽 −𝑇

𝛼 𝛽
.

Taking the expected value, this implies

E(𝑇) E(1/𝑇) ≤ E(𝑇) 𝛼 + 𝛽 − E(𝑇)
𝛼 𝛽

=
(𝛼 + 𝛽)2
4𝛼 𝛽

− 1

𝛼 𝛽

[
E(𝑇) − 1

2

(𝛼 + 𝛽)
]
2

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
.

This shows that essential upper bound in (2.13). The remaining inequality follows directly from

0 < 𝛼 ≤ 𝛽 . □

10 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Instead of the Euclidean norm, we can also use the norm induced by the𝑀-inner product.

Corollary 2.2 (Generalized Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 are 𝑀 are both s. p. d.,
𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝑀𝐴−1𝑀 𝑥)

∥𝑥 ∥4
𝑀

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.14a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the generalized condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4

𝑀

≤ (𝜅 + 1)
2

4𝜅
≤ 𝜅. (2.14b)

We do not give a proof of Corollary 2.2 here; see for instance Herzog, 2022, Folgerung 4.14.

§ 2.5 Functions and Derivatives

• Given a function 𝑓 : R𝑛 → R and 𝑥 ∈ R𝑛 , the derivative of the partial function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑒 (𝑖))
at 𝑡 = 0 is the 𝑖-th partial derivative of 𝑓 at 𝑥 , briefly: 𝜕

𝜕𝑥𝑖
𝑓 (𝑥). Here 𝑒 (𝑖) = (0, . . . , 0, 1, 0, . . . , 0)ᵀ

is one of the standard basis vectors of R𝑛 . In other words,

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑒 (𝑖)) − 𝑓 (𝑥)
𝑡

.

• More generally, the derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (two-sided)
directional derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝜕

𝜕𝑑
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• The right-sided derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (one-sided) directional
derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝑓 ′(𝑥 ;𝑑) = lim

𝑡↘0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• A function 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 if there exists a row vector 𝑣 ∈ R𝑛 such that

𝑓 (𝑥 + 𝑑) − 𝑓 (𝑥) − 𝑣 𝑑
∥𝑑 ∥ → 0 for 𝑑 → 0.

In this case, the vector 𝑣 is the (total) derivative of 𝑓 at 𝑥 , and it is denoted by 𝑓 ′(𝑥).

https://tinyurl.com/scoop-nlo 11

https://tinyurl.com/scoop-nlo

R. Herzog cbn

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥) =
(
𝜕𝑓 (𝑥)
𝜕𝑥1

, · · · , 𝜕𝑓 (𝑥)
𝜕𝑥𝑛

)
∈ R𝑛 .

The transposed vector (a column vector)

∇𝑓 (𝑥) =
©­­­«
𝜕𝑓 (𝑥)
𝜕𝑥1
...

𝜕𝑓 (𝑥)
𝜕𝑥𝑛

ª®®®¬ = 𝑓 ′(𝑥)ᵀ ∈ R𝑛

is the gradient (w.r.t. the Euclidean inner product) of 𝑓 at 𝑥 .

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥 ;𝑑) = 𝜕

𝜕𝑑
𝑓 (𝑥) = 𝑓 ′(𝑥) 𝑑

holds for all 𝑑 ∈ R𝑛 . That is, the one-sided and two-sided directional derivatives of 𝑓 at 𝑥 agree,

and they can be evaluated by applying the derivative 𝑓 ′(𝑥) to the direction 𝑑 .

• A function 𝑓 : R𝑛 → R is continuously partially differentiable or briefly: 𝐶1(R𝑛,R), if all
partial derivatives

𝜕𝑓 (𝑥)
𝜕𝑥𝑖

, as functions of 𝑥 , are continuous. 𝐶1
-functions are differentiable, and

the derivative 𝑓 ′ is continuous.

• A vector-valued function 𝐹 : R𝑛 → R𝑚 is differentiable at 𝑥 ∈ R𝑛 if all component func-

tion 𝐹1, . . . , 𝐹𝑚 are differentiable at 𝑥 . In this case, the derivative 𝐹 ′(𝑥) is given by the Jacobian
of 𝐹 at 𝑥 , i. e., by ©­­­­­«

𝜕𝐹1(𝑥)
𝜕𝑥1

· · · 𝜕𝐹1(𝑥)
𝜕𝑥𝑛

...
...

𝜕𝐹𝑚 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹𝑚 (𝑥)
𝜕𝑥𝑛

ª®®®®®¬
∈ R𝑚×𝑛 .

• 𝐹 is continuously partially differentiable if all entries of the Jacobian are continuous as

functions of 𝑥 . 𝐶1
-functions are differentiable, and the derivative 𝐹 ′ is continuous.

• A function 𝑓 : R𝑛 → R is twice differentiable at 𝑥 ∈ R𝑛 if 𝑓 is differentiable in a neighbor-

hood of 𝑥 and the derivative 𝑥 ↦→ 𝑓 ′(𝑥) ∈ R𝑛 is differentiable at 𝑥 . In this case, the second

derivative 𝑓 ′′(𝑥) is given by the Hessian of 𝑓 at 𝑥 , i. e., by the matrix of second-order partial

derivatives

(
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑖 𝜕𝑥 𝑗

)𝑛
𝑖,𝑗=1

=

©­­­­­­­«

𝜕2 𝑓 (𝑥)
𝜕𝑥2

1

𝜕2 𝑓 (𝑥)
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓 (𝑥)
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓 (𝑥)
𝜕𝑥2

2

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥2𝜕𝑥𝑛

...
...

...
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓 (𝑥)
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥2𝑛

ª®®®®®®®¬
.

When 𝑓 is twice differentiable at 𝑥 , then the Hessian is symmetric by Schwarz’ theorem.
3

3
See for instance Cartan, 1967, Proposition 5.2.2

12 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

• A function 𝑓 : R𝑛 → R is twice continuously partially differentiable or briefly: 𝐶2(R𝑛,R), if
all entries of the Hessian are continuous as functions of 𝑥 . 𝐶2

-functions are twice differentiable.

§ 2.6 Taylor’s Theorem

We are going to state Taylor’s theorem in two variants:

Theorem 2.3 (Taylor, see Cartan, 1967, Theorem 5.6.3). Suppose that 𝐺 ⊆ R𝑛 open, 𝑘 ∈ N0 and
𝑓 : 𝐺 → R 𝑘 times differentiable, and (𝑘 + 1) times differentable at 𝑥 (0) ∈ 𝐺 . Then for all 𝜀 > 0, there
exists 𝛿 > 0 such that

in case 𝑘 = 0 :

��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0)) − 𝑓 ′(𝑥 (0)) 𝑑 �� ≤ 𝜀 ∥𝑑 ∥,
in case 𝑘 = 1 :

��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0)) − 𝑓 ′(𝑥 (0)) 𝑑 − 1

2

𝑑ᵀ 𝑓 ′′(𝑥 (0))𝑑
�� ≤ 𝜀 ∥𝑑 ∥2.

for all ∥𝑑 ∥ < 𝛿 .

Theorem 2.4 (Taylor, see Geiger, Kanzow, 1999, Satz A.2 or Heuser, 2002, Satz 168.1).
Suppose that 𝐺 ⊆ R𝑛 is open, 𝑘 ∈ N0 and 𝑓 : 𝐺 → R (𝑘 + 1) times continuously partially differentiable,
briefly a𝐶𝑘+1(𝐺,R) function. Suppose that 𝑥 (0) and 𝑥 (0) +𝑑 and the entire line segment between them lie
in 𝐺 . Then there exists 𝜉 ∈ (0, 1) such that

in case 𝑘 = 0 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0)) + 𝑓 ′(𝑥 (0) + 𝜉 𝑑) 𝑑 (mean value theorem),

in case 𝑘 = 1 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0)) + 𝑓 ′(𝑥 (0)) 𝑑 + 1

2

𝑑ᵀ 𝑓 ′′(𝑥 (0) + 𝜉 𝑑) 𝑑.

§ 2.7 Convergence Rates

We denote (vector-valued) sequencesN→ R𝑛 by
(
𝑥 (𝑘)

)
and not (𝑥𝑘) etc., in order to avoid a conflict of

notation with the components of a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)ᵀ ∈ R𝑛 . The subsequence of
(
𝑥 (𝑘)

)
obtained

by the strictly increasing sequence N ∋ ℓ ↦→ 𝑘 (ℓ) ∈ N is denoted by

(
𝑥 (𝑘

(ℓ)))
.

We introduce various convergence rates for sequences in order to characterize the speed of convergence,

e. g., of iterates in an algorithm.

Definition 2.5 (Q-convergence rates4).
Suppose that

(
𝑥 (𝑘)

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖)
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-linearly w.r.t. the𝑀-norm if there exists 𝑐 ∈ (0, 1) such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ∈ N sufficiently large.
4
“Q” stands for “quotient”.

https://tinyurl.com/scoop-nlo 13

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑖)
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ∈ N.

(𝑖𝑖𝑖) Suppose that 𝑥 (𝑘) → 𝑥∗.
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-quadratically w.r.t. the𝑀-norm if

there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘) − 𝑥∗∥2𝑀 for all 𝑘 ∈ N.

Note: Q-superlinear and Q-quadratic convergence of a sequence are independent of the norm (inner

product)𝑀 . However, the property of Q-linear convergence can be lost when changing the norm.

Definition 2.6 (R-convergence rates
5
).

Suppose that
(
𝑥 (𝑘)

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖)
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-linearly w.r.t. the𝑀-norm if there exists a null sequence

(
𝜀 (𝑘)

)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,

and
(
𝜀 (𝑘)

)
converges to zero Q-linearly w.r.t. | · |.

(𝑖𝑖)
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,

and
(
𝜀 (𝑘)

)
converges to zero Q-superlinearly w.r.t. | · |.

(𝑖𝑖𝑖)
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-quadratically w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,

and
(
𝜀 (𝑘)

)
converges to zero Q-quadratically w.r.t. | · |.

Note: The R-convergence modes are slightly weaker than the respective Q-convergence rates. Q-

convergence considers the decrease in the distance to the limit ∥𝑥 (𝑘) − 𝑥∗∥𝑀 in every step of the

sequence. By contrast, R-convergence considers the decrease overall.

§ 2.8 Convexity

Convexity plays a very important role in optimization in general. In this class, however, we will rely

on it only scarcely. We briefly recall here some elements of convexity. You may study Herzog,

2022, § 13 if you wish to have more background information.

5
“R” stands for “root”.

14 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Definition 2.7 (Convex function).
A function 𝑓 : R𝑛 → R is termed

(𝑖) convex in case
𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.15)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑖) strictly convex in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) < 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.16)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ (0, 1).

(𝑖𝑖𝑖) 𝜇-strongly convex or strongly convex with parameter 𝜇 > 0 in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) + 𝜇
2

𝛼 (1 − 𝛼)∥𝑥 − 𝑦 ∥2 ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.17)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑣) concave (concave) or strictly concave or constrly concave if −𝑓 is convex or strictly convex or
strongly convex, respectively.

Theorem 2.8 (Characterization of convexity via first-order derivatives).
Suppose that 𝑓 : R𝑛 → R is differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 is convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 ,
𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.18)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 , (
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ 0 (2.19)

holds. Equation (2.19) means that 𝑓 ′ is amonotone operator.

(b) The following are equivalent:

(𝑖) 𝑓 ist strictly convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,

𝑓 (𝑥) − 𝑓 (𝑦) > 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.20)

holds.

https://tinyurl.com/scoop-nlo 15

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) > 0. (2.21)

Equation (2.21) means that 𝑓 ′ is a strictly monotone operator.

(c) The following are equivalent:

(𝑖) 𝑓 ist strongly convex.

(𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) + 𝜇
2

∥𝑥 − 𝑦 ∥2 (2.22)

holds.

(𝑖𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ 𝜇 ∥𝑥 − 𝑦 ∥2. (2.23)

Equation (2.23) means that 𝑓 ′ is a strongly monotone operator.

Theorem 2.9 (Characterization of convexity via second-order derivatives).
Suppose that 𝑓 : R𝑛 → R is twice differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 ist convex.

(𝑖𝑖) 𝑓 ′′ is everywhere positive semidefinite (has only non-negative eigenvalues).

(b) When 𝑓 ′′ is everywhere positive definite, then 𝑓 is strictly convex.

(c) The following are equivalent:

(𝑖) 𝑓 is strongly convex with parameter 𝜇 > 0.

(𝑖𝑖) The smallest eigenvalue of 𝑓 ′′(𝑥) satisfies 𝜆min(𝑓 ′′(𝑥)) ≥ 𝜇 > 0 for all 𝑥 ∈ R𝑛 .

§ 2.9 Miscellanea

We denote the interior of a set 𝑆 ⊆ R𝑛 by int 𝑆 and its closure by cl 𝑆 .

Given 𝜀 > 0 and 𝑥 ∈ R𝑛 ,
𝐵𝑀𝜀 (𝑥 (0)) B

{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 (0) ∥𝑀 < 𝜀
}

16 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

denotes the open 𝜀-ball w.r.t. the𝑀-norm about 𝑥 (0) . Similarly, the closed 𝜀-ball is

cl𝐵𝑀𝜀 (𝑥 (0)) B
{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 (0) ∥𝑀 ≤ 𝜀}.
The ceiling function ⌈𝑥⌉ returns the smallest integer ≥ 𝑥 .

https://tinyurl.com/scoop-nlo 17

https://tinyurl.com/scoop-nlo

Chapter 1 Numerical Techniques for Unconstrained
Optimization Problems

We discuss in this chapter numerical methods for the unconstrained version of (1.1), i. e.,

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The reason for discussing the unconstrained problem first is that we can introduce the essential

algorithmic techniques without the difficulties of any constraints present.

Up front, we mention that we can only hope to find local minimizers. Determining global minimizers is

generally much harder and only possible under additional assumptions on the objective, and generally

only in relatively small dimensions 𝑛 ∈ N. A notable case of an additional assumption is that of a

convex objective 𝑓 . In this case, every local minimizer is already a global minimizer. Morever, first-

order optimality conditions are already sufficient for optimality, and we do not require second-order

conditions.

§ 3 Optimality Conditions

We assume you have seen the following first- and second-order optimality conditions, so we only

briefly recall them; see Herzog, 2022, § 3 for more details.

Theorem 3.1 (First-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is differentiable at 𝑥∗. Then 𝑓 ′(𝑥∗) = 0.

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. We consider the curve 𝛾 : (−𝛿, 𝛿) → R𝑛 , 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 . For
sufficiently small 𝛿 > 0, this curve runs within the neighborhood of local optimality of 𝑥∗. This implies

that 𝑓 ◦ 𝛾 has a local minimizer at 𝑡 = 0.

From this local optimality, we infer that the difference quotient satisfies

𝑓 (𝛾 (𝑡)) − 𝑓 (𝛾 (0))
𝑡

=
𝑓 (𝑥∗ + 𝑡 𝑑) − 𝑓 (𝑥∗)

𝑡

{
≥ 0 for 𝑡 > 0,

≤ 0 for 𝑡 < 0.

On the other hand, this difference quotient converges to 𝑓 ′(𝑥∗) 𝑑 as 𝑡 → 0. Consequently, we must

have 𝑓 ′(𝑥∗) 𝑑 = 0. Since 𝑑 ∈ R𝑛 was arbitrary, this means 𝑓 ′(𝑥∗) = 0. □

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

A point 𝑥 ∈ R𝑛 with the property 𝑓 ′(𝑥) = 0 is termed a stationary point of 𝑓 .

Theorem 3.2 (Second-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is twice differentiable at 𝑥∗. Then the Hessian
𝑓 ′′(𝑥∗) is positive semidefinite.1

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. Wie in Theorem 3.1 we define 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 and again

consider the objective along the curve, i. e., 𝜑 B 𝑓 ◦ 𝛾 , which has a local minimizer at 𝑡 = 0. Since 𝜑 is

twice differentiable at 𝑡 = 0, Theorem 2.3 implies the following: for all 𝜀 > 0 there exists 𝛿 > 0 such

that ��𝜑 (𝑡) − 𝜑 (0) − 𝜑 ′(0) 𝑡 − 1

2

𝜑 ′′(0) 𝑡2
�� ≤ 𝜀 𝑡2

holds for all |𝑡 | < 𝛿 . In view of Theorem 3.1, 𝜑 ′(0) = 0, and the local optimality implies 𝜑 (0) ≤ 𝜑 (𝑡)
for all |𝑡 | sufficiently small. We thus obtain

− 1
2

𝜑 ′′(0) 𝑡2 ≤ 𝜑 (𝑡) − 𝜑 (0) − 1

2

𝜑 ′′(0) 𝑡2 ≤ 𝜀 𝑡2

for all |𝑡 | sufficiently small, whence

1

2

𝜑 ′′(0) ≥ −𝜀.

Since 𝜀 > 0 was arbitrary, we conclude 𝜑 ′′(0) = 𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 0. And since 𝑑 ∈ R𝑛 was arbitrary, we
have shown 𝑓 ′′(𝑥∗) to be positive semidefinite. □

Theorem 3.3 (Second-order sufficient optimality condition).
Suppose that 𝑓 is twice differentiable at 𝑥∗ and

(𝑖) 𝑓 ′(𝑥∗) = 0 and

(𝑖𝑖) 𝑓 ′′(𝑥∗) is positive definite2, with minimal eigenvalue 𝜇 > 0.

Then for every 𝛽 ∈ (0, 𝜇), there exists a neighborhood𝑈 (𝑥∗) of 𝑥∗ such that

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝛽
2

∥𝑥 − 𝑥∗∥2 for all 𝑥 ∈ 𝑈 (𝑥∗) . (3.1)

In particular, 𝑥∗ is a strict local minimizer of 𝑓 .

Proof. Here we use Theorem 2.3 directly for 𝑓 (not along a curve). For every 𝜀 > 0, there exists 𝛿 > 0

such that ��𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 𝑓 ′(𝑥∗) 𝑑 − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑
�� ≤ 𝜀 ∥𝑑 ∥2

holds for all ∥𝑑 ∥ < 𝛿 . According to the assumptions, 𝑓 ′(𝑥∗) = 0 holds. Therefore,

−𝜀 ∥𝑑 ∥2 ≤ 𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑

1
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being non-negative.

2
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being positive.

https://tinyurl.com/scoop-nlo 19

https://tinyurl.com/scoop-nlo

R. Herzog cbn

holds for all ∥𝑑 ∥ < 𝛿 . This implies

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 .

From (2.8) (with 𝑀 = Id), the values of the Rayleigh quotient associated with the symmetric matrix

𝑓 ′′(𝑥∗) are bounded above and below by the extremal eigenvalues of 𝑓 ′′(𝑥∗). In particular, we have

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 𝜇 ∥𝑑 ∥2 for all 𝑑 ∈ R𝑛 .

We can now finalize the proof: for 𝛽 ∈ (0, 𝜇), choose 𝜀 B (𝜇 − 𝛽)/2 > 0 and an appropriate value of

𝛿 > 0. Then we have

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

≥ 𝑓 (𝑥∗) + 𝜇
2

∥𝑑 ∥2 − 𝜀 ∥𝑑 ∥2

= 𝑓 (𝑥∗) + 𝛽
2

∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 . □

Property (3.1) means that 𝑓 has at least quadratic growth near 𝑥∗. Equivalently, 𝑓 is locally strongly

convex with parameter 𝛽 ∈ (0, 𝜇).
End of Week 1

§ 4 Minimization of Quadratic Functions

In this section we consider the simplest reasonable class of unconstrained optimization problems,

namely the minimization of quadratic polynomials:

Minimize 𝜙 (𝑥) B 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 where 𝑥 ∈ R𝑛 . (4.1)

The data of the problem is 𝐴 ∈ R𝑛×𝑛 , 𝑏 ∈ R𝑛 and 𝑐 ∈ R. We can assume w.l.o.g. that 𝐴 is symmetric.

Quiz 4.1: Why?

If we knew a spectral decomposition of 𝐴 = 𝑉Λ𝑉 ᵀ (which of course we usually don’t), we could

represent the objective as 𝜙 (𝑥) = 1

2
𝑥ᵀ𝑉 Λ𝑉 ᵀ𝑥 − 𝑏ᵀ𝑉 𝑉 ᵀ𝑥 + 𝑐 . After a substitution of variables 𝑥 = 𝑉 ᵀ𝑦 ,

this becomes 𝜙 (𝑦) = 1

2
𝑦ᵀ Λ 𝑦 −𝑏ᵀ𝑉 𝑦 + 𝑐 . Consequently, in these coordinates, the problem decomposes

into a sum of 𝑛 independent quadratic minimization problems in the components 𝑦𝑖 .

Being able to solve (4.1) is an essential building block for subsequent tasks.

20 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Lemma 4.1 (Solvability and global solutions of (4.1)
3
). Suppose that 𝐴 ∈ R𝑛×𝑛 is symmetric, 𝑏 ∈ R𝑛

and 𝑐 ∈ R. Then the following holds:

(𝑖) If 𝐴 is positive semidefinite, then the objective in (4.1) is convex. In this case, the following are
equivalent:

(a) The problem (4.1) possess at least one (global) minimizer.

(b) The objective 𝜙 is bounded below.

(c) 𝐴𝑥 = 𝑏 is solvable.

The global minimizers of (4.1) are precisely the solutions of the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) In case 𝐴 is not positive semidefinite4, the objective 𝜙 is not bounded below, thus problem (4.1) is
unbounded.

Proof. □

Corollary 4.2 (Unique solvability of (4.1)). Problem (4.1) possesses a unique (global) solution 𝑥∗ if and
only if 𝐴 is s. p. d. In this case, 𝑥∗ = 𝐴−1𝑏, and the optimal value is

𝜙 (𝑥∗) = 𝑐 − 1

2

∥𝑥∗∥2𝐴 = 𝑐 − 1

2

∥𝐴−1𝑏∥2𝐴 = 𝑐 − 1

2

∥𝑏∥2
𝐴−1 .

We will assume for the remainder of § 4 that 𝐴 is symmetric and positive definite (s. p. d.). Hence, the

solution of (4.1) is equivalent to the solution of the linear system 𝐴𝑥 = 𝑏. We denote that solution

by 𝑥∗ = 𝐴−1𝑏. Of course, we could be using a direct solver, such as Gaussian elimination, which

computes an LU decomposition of 𝐴, or rather its s. p. d. variant without pivoting, which computes the

Cholesky decomposition 𝐴 = 𝐿𝐿ᵀ with the lower triangular matrix 𝐿.5 However, when the problem

is high-dimensional (such as 𝑛 ≥ 10 000), then the generic ∼ 𝑛3 effort for solving the linear system

becomes prohibitive. Even when 𝐴 is sparse, as is often the case for high-dimensional problems, and a

direct solver which exploits this is used
6
, this is no longer feasible for very high dimension 𝑛.

This is where iterative solvers for linear systems come into play. They do not solve the problem at

once, but rather generate a sequence

(
𝑥 (𝑘)

)
which converges to the solution. Beyond the ability to

deal with very high-dimensional problems, iterative solvers have another advantage: Any iterate 𝑥 (𝑘)

of the method can be viewed as an approximate solution of 𝐴𝑥 = 𝑏 (or an approximate solution of

(4.1)), and we can stop the iteration as soon as the desired tolerance is reached, when the time budget

is used up, or when something unexpected happens, e. g., 𝐴 turns out not to be positive definite after

all. Recall that direct solvers do not yield any usable approximate solutions of the system while they

3
compare Nocedal, Wright, 2006, Lemma 4.7

4
The matrix 𝐴 possesses at least one negative eigenvalue.

5
We assume you have seen these methods, e. g., in the class Einführung in die Numerik.
6
such as a sparse Cholesky decomposition

https://tinyurl.com/scoop-nlo 21

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://tinyurl.com/scoop-nlo

R. Herzog cbn

are running; they have to carry through to the end, and only then return a solution, which is exact up

to the influence of floating-point error. Iterative solvers have the additional advantage that they do

not require access to the matrix 𝐴 entry by entry. Rather they only require matrix-vector products,

i. e., a function which evaluates 𝑥 ↦→ 𝐴𝑥 . Quiz 4.2: Can you think of an example where matrix-vector

products are available, but you typically don’t have access to the entries of the underlying matrix?

Our objective 𝜙 from (4.1) satisfies

𝜙 (𝑥) = 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐

∇𝜙 (𝑥) = 𝐴𝑥 − 𝑏 C 𝑟 .

We call 𝑟 = ∇𝜙 (𝑥) the residual of the linear system 𝐴𝑥 = 𝑏 at 𝑥 .7 Independently of any method we

might be using to solve 𝐴𝑥 = 𝑏 (or minimize 𝜙), we have the following relation between the values of

the objective, the error 𝑥 − 𝑥∗ at a point 𝑥 , and the residual at 𝑥 :

Lemma 4.3. We have

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1

2

∥𝑥 − 𝑥∗∥2𝐴 =
1

2

∥𝑟 ∥2
𝐴−1 =

1

2

∥∇𝜙 (𝑥)∥2
𝐴−1 . (4.2)

Proof. Direct calculation shows

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 − 1

2

(𝑥∗)ᵀ𝐴𝑥∗ + 𝑏ᵀ𝑥∗ − 𝑐

=
1

2

𝑥ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 − 1

2

(𝑥∗)ᵀ𝐴𝑥∗ + (𝑥∗)ᵀ𝐴𝑥∗ since 𝑏 = 𝐴𝑥∗

=
1

2

𝑥ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 + 1

2

(𝑥∗)ᵀ𝐴𝑥∗

=
1

2

∥𝑥 − 𝑥∗∥2𝐴

=
1

2

(𝑥 − 𝑥∗)ᵀ𝑟 = 1

2

𝑟 ᵀ𝐴−1𝑟 since 𝑟 = 𝐴 (𝑥 − 𝑥∗)

=
1

2

∥𝑟 ∥2
𝐴−1

=
1

2

∥∇𝜙 (𝑥)∥2
𝐴−1 .

□

We will discuss in the remainder of this section two different iterative methods for the solution of (4.1),

and equivalently the solution of the linear system 𝐴𝑥 = 𝑏, where 𝐴 is s. p. d.
8
These methods are the

gradient descent method (also known as steepest descent method), and the conjugate gradient
method.
7
Sometimes the residual is defined in the literature with opposite sign. We do not write 𝑟 (𝑥) to keep the notation concise.

It will be clear from the context which vector 𝑥 the residual is associated with.

8
You can learn more about iterative solvers for more general linear systems (not related to optimization) in the class

Numerische lineare Algebra.

22 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We begin with the gradient descent method, which is based on the following simple

Idea: from the current iterate 𝑥 (𝑘) , move a bit along the direction of steepest descent of the objective,

and take the point reached as the next iterate 𝑥 (𝑘+1) .

§ 4.1 Direction of Steepest Descent

We first need to clarify what the direction of steepest descent of a function 𝑓 : R𝑛 → R at a point 𝑥 is.

Descent directions for a function 𝑓 : R𝑛 → R at a point 𝑥 are directions whose where the directional

derivative of 𝑓 at 𝑥 is negative.

Definition 4.4 (Descent directions).
Let 𝑓 : R𝑛 → R be differentiable at 𝑥 ∈ R𝑛 . A vector 𝑑 ∈ R𝑛 is termed a descent direction for 𝑓 at 𝑥 if

𝑓 ′(𝑥) 𝑑 < 0. (4.3)

GM
By definition, the direction of steepest descent minimizes the directional derivative 𝑓 ′(𝑥) 𝑑 over all

vectors 𝑑 ∈ R𝑛 of constant length. What we mean by “length” is defined through the inner product𝑀

in use:

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛

subject to ∥𝑑 ∥𝑀 = 1.
(4.4)

We note that we could be considering the equivalent problem

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛

subject to ∥𝑑 ∥𝑀 ≤ 1.
(4.5)

The normalization to unit length is, by the way, arbitrary.

Problems (4.4), (4.5) are constrained problems, but we can solve them without an elaborated theory.

We rewrite the objective so that the directional derivative is expressed using the𝑀-inner product
9

𝑓 ′(𝑥) 𝑑 = ∇𝑓 (𝑥)ᵀ𝑑 = ∇𝑓 (𝑥)ᵀ𝑀−1𝑀 𝑑 =
(
𝑀−1∇𝑓 (𝑥)

)ᵀ
𝑀 𝑑,

where we used the symmetry of𝑀 (actually of𝑀−1) in the last step. The Cauchy-Schwarz inequality

w.r.t. the𝑀-inner product shows that this expression is minimal precisely when 𝑑 is antiparallel to

𝑀−1∇𝑓 (𝑥).

We summarize these findings:

Definition 4.5 (𝑀-gradient, direction of steepest descent w.r.t. the𝑀-inner product).
Suppose that 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 and that 𝑓 ′(𝑥) ≠ 0 holds.

9
In case this means something to you, we determine the Riesz representer of 𝑓 ′ (𝑥) w.r.t. the𝑀-inner product.

https://tinyurl.com/scoop-nlo 23

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖) The vector
∇𝑀 𝑓 (𝑥) B 𝑀−1∇𝑓 (𝑥) (4.6)

is termed the gradient of 𝑓 at 𝑥 w.r.t. the𝑀-inner product or briefly: the𝑀-gradient.

(𝑖𝑖) The vector −∇𝑀 𝑓 (𝑥) and all of its positive multiples are termed a direction of steepest descent
of 𝑓 at 𝑥 w.r.t. the𝑀-inner product.

We evaluate the negative𝑀-gradient (direction of steepest descent) by solving the linear system

𝑀 𝑑∗ = −∇𝑓 (𝑥) . (4.7)

When using the Euclidean inner product (𝑀 = Id), we continue to write ∇𝑓 (𝑥) instead of ∇Id 𝑓 (𝑥).
Sometimes, the use of ∇𝑀 𝑓 (𝑥) instead of the Euclidean gradient direction ∇𝑓 (𝑥) is referred to as

preconditioning.

§ 4.2 Gradient Descent Method with Cauchy Step Sizes

The direction of steepest descent at 𝑥 used by the gradient method is thus
10

𝑑 = −∇𝑀𝜙 (𝑥) = −𝑀−1𝑟 .

Now that the choice of direction is clear, let us analyze the choice of the step size. We have the

following expression for the difference of function values before and after a step:

𝜙 (𝑥 + 𝛼 𝑑) − 𝜙 (𝑥) = 1

2

(𝑥 + 𝛼 𝑑)ᵀ𝐴 (𝑥 + 𝛼 𝑑) − 𝑏ᵀ(𝑥 + 𝛼 𝑑) + 𝑐 − 1

2

𝑥ᵀ𝐴𝑥 + 𝑏ᵀ𝑥 − 𝑐

=
1

2

(𝑑ᵀ𝐴𝑑) 𝛼2 + (𝐴𝑥 − 𝑏)ᵀ𝑑 𝛼

=
1

2

(𝑑ᵀ𝐴𝑑) 𝛼2 + (𝑟 ᵀ𝑑) 𝛼. (4.8)

Note: This formula holds for arbitrary directions 𝑑 and step sizes 𝛼 .

When 𝑑 ≠ 0, then the one-dimensional quadratic polynomial 𝛼 ↦→ 𝜙 (𝑥 + 𝛼 𝑑) is strongly convex. It is

therefore an obvious idea to choose 𝛼 such that 𝜙 (𝑥 +𝛼 𝑑) is minimized. According to (4.8), we have

d

d𝛼
𝜙 (𝑥 + 𝛼 𝑑) = (𝑑ᵀ𝐴𝑑) 𝛼 + 𝑟 ᵀ𝑑,

d
2

d𝛼2
𝜙 (𝑥 + 𝛼 𝑑) = 𝑑ᵀ𝐴𝑑 > 0.

Due to the positivity of the second derivative, the second-order sufficient condition (Theorem 3.3) is

satisfied when
d

d𝛼
𝜙 (𝑥 + 𝛼 𝑑) = 0, which amounts to

𝛼∗ = − 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑
. (4.9)

10
We avoid iteration indices for now in order to avoid cluttered notation.

24 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

This “optimal” step size is also known as the Cauchy step size. For this choice, the difference of
function values (4.8) before and after a step becomes

𝜙 (𝑥 + 𝛼∗ 𝑑) − 𝜙 (𝑥) = 1

2

(𝑑ᵀ𝐴𝑑) (𝛼∗)2 + (𝑟 ᵀ𝑑) 𝛼∗

=
1

2

(𝑑ᵀ𝐴𝑑)
(𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑

)
2

− (𝑟 ᵀ𝑑) 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑

= − 1
2

(𝑟 ᵀ𝑑)2
𝑑ᵀ𝐴𝑑

. (4.10)

Note: This formula holds for arbitrary directions 𝑑 ≠ 0 but it uses the Cauchy step size 𝛼∗.

We can now state the steepest descent method w.r.t. the 𝑀-inner product and the Cauchy step size

(4.9) for the iterative solution of the unconstrained quadratic minimization problem (4.1) with s. p. d. 𝐴.

This method, with𝑀 = Id, was already published by Cauchy, 1847.

Algorithm 4.6 (Gradient descent method for (4.1) w.r.t. the𝑀-inner product with Cauchy step size).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏

1: Set 𝑘 B 0

2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual
3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient
4: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0))∥2𝑀 = ∥𝑟 (0) ∥2

𝑀−1

5: while stopping criterion not met do
6: Set 𝑞 (𝑘) B 𝐴𝑑 (𝑘)

7: Set 𝜃 (𝑘) B (𝑞 (𝑘))ᵀ𝑑 (𝑘)
8: Set 𝛼 (𝑘) B 𝛿 (𝑘)/𝜃 (𝑘) // evaluate the Cauchy step size
9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // update the iterate
10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘) + 𝛼 (𝑘)𝑞 (𝑘) // update the residual
11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the new negative𝑀-gradient
12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑟 (𝑘+1) ∥2

𝑀−1

13: Set 𝑘 B 𝑘 + 1
14: end while
15: return 𝑥 (𝑘)

The following can be said about Algorithm 4.6.

Remark 4.7 (on Algorithm 4.6).

(𝑖) Algorithm 4.6 is an iterative solver for the unconstrained quadratic minimization problem (4.1) with
s. p. d. 𝐴, and simultaneously an iterative solver for the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) We do not require access to the matrix 𝐴 entry by entry, matrix-vector products with 𝐴 are enough.

https://tinyurl.com/scoop-nlo 25

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑖𝑖) The user gets to choose the inner product 𝑀 . This is known as preconditioning, and therefore
Algorithm 4.6 is often termed a preconditioned gradient descent method. The case 𝑀 = Id

corresponds to the classical gradient descent method (without preconditioning).

(𝑖𝑣) We also do not require access to the inner product matrix𝑀 entry by entry, matrix-vector products
with𝑀−1 (i. e., solutions of linear systems with𝑀) are enough.

(𝑣) Algorithm 4.6 requires the storage of four vectors, which are iteratively overwritten: iterates 𝑥 (𝑘) ,
residuals 𝑟 (𝑘) , negative gradient directions 𝑑 (𝑘) , and vectors 𝑞 (𝑘) = 𝐴𝑑 (𝑘) .

(𝑣𝑖) Every iteration requires one matrix-vector product with 𝐴 and one application of the preconditioner,
i. e., one matrix-vector product with𝑀−1.

(𝑣𝑖𝑖) In order to mitigate the accumulation of round-off error, it is advisable to evaluate the residual
every, say, 50 iterations according to 𝑟 (𝑘) B 𝐴𝑥 (𝑘) − 𝑏, rather than update it.

(𝑣𝑖𝑖𝑖) The Cauchy step sizes satisfy

0 < 𝜆min(𝐴;𝑀) ≤
1

𝛼 (𝑘)
=
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)
≤ 𝜆max(𝐴;𝑀), (4.11)

as long as 𝑑 (𝑘) ≠ 0 holds, i. e., as long as 𝑥 (𝑘) ≠ 𝑥∗. Consequently, the Cauchy step sizes generated
can be used to obtain estimates on the eigenvalues of 𝐴 w.r.t. 𝑀 .

(𝑖𝑥) When Algorithm 4.6 is provided with the value of 𝑐 , the following recursion can be added to the
algorithm to keep track of the value of the objective:

𝜙 (𝑥 (0)) = 𝑐 + 1

2

(𝑟 (0) − 𝑏)ᵀ(𝑥 (0)) initialization (4.12a)

𝜙 (𝑥 (𝑘+1)) = 𝜙 (𝑥 (𝑘)) − 1

2

𝛼 (𝑘)𝛿 (𝑘) update. (4.12b)

This does not incur noticeable computational overhead and does not require the storage of extra
vectors. Alternatively, the value of 𝜙 (𝑥 (0)) can be provided.

We now seek to estimate the speed of convergence of Algorithm 4.6. The function values at the iterates

satisfy

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)

=
1

2

∥𝑟 (𝑘+1) ∥2
𝐴−1 by (4.2)

=
1

2

∥𝑟 (𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘) ∥2
𝐴−1

=
1

2

∥𝑟 (𝑘) ∥2
𝐴−1 + 𝛼

(𝑘) (𝑟 (𝑘))ᵀ𝑑 (𝑘) + 1

2

[
𝛼 (𝑘)

]
2 (𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) .

26 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

This formula so far holds for any choice of step size 𝛼 (𝑘) and any choice of direction 𝑑 (𝑘) . We now

insert the Cauchy step size 𝛼 (𝑘) = − (𝑟
(𝑘))ᵀ𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) and obtain

=
1

2

∥𝑟 (𝑘) ∥2
𝐴−1 −

[
(𝑟 (𝑘))ᵀ𝑑 (𝑘)

]
2

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
+ 1

2

[
(𝑟 (𝑘))ᵀ𝑑 (𝑘)

]
2

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)

=

(
1 −

[
(𝑟 (𝑘))ᵀ𝑑 (𝑘)

]
2[

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
] [
(𝑟 (𝑘))ᵀ𝐴−1𝑟 (𝑘)

]) (𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) by (4.2).

The directions 𝑑 (𝑘) are still arbitrary. Inserting the relationship 𝑑 (𝑘) = −𝑀−1 𝑟 (𝑘) = −∇𝑀𝜙 (𝑥 (𝑘))
characteristic for gradient descent, in the form 𝑟 (𝑘) = −𝑀 𝑑 (𝑘) , we obtain

=

(
1 −

[
(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)

]
2[

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
] [
(𝑑 (𝑘))ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘)

]) (𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) .
The fraction is precisely the type of expression estimated by the generalized Kantorovich inequality

(2.14). This yields

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)

≤
(
1 − 4𝛼 𝛽

(𝛼 + 𝛽)2

) (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
=

(
𝛽 − 𝛼
𝛽 + 𝛼

)
2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
=

(
𝜅 − 1
𝜅 + 1

)
2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
since 𝜅 = 𝛽/𝛼.

We have thus shown the following classical convergence result for Algorithm 4.6:

Theorem 4.8 (Convergence of Algorithm 4.6). Suppose that 𝐴 ∈ R𝑛×𝑛 are 𝑀 are both s. p. d., 𝛼 B
𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then for any
choice of the initial guess 𝑥 (0) , the gradient descent method with Cauchy step sizes converges to the unique
solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the estimates

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)
2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
(4.13a)

∥𝑥 (𝑘+1) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)
∥𝑥 (𝑘) − 𝑥∗∥𝐴 (4.13b)

and consequently

𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)
2𝑘 (

𝜙 (𝑥 (0)) − 𝜙 (𝑥∗)
)

(4.13c)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴 . (4.13d)

Moreover, the objective values 𝜙 (𝑥 (𝑘)) and thus the norm of the error ∥𝑥 (𝑘) − 𝑥∗∥𝐴 are monotonically
decreasing.

https://tinyurl.com/scoop-nlo 27

https://tinyurl.com/scoop-nlo

R. Herzog cbn

As an immediate consequence of this theorem, we can estimate the maximal number of iterations

required until the left-hand terms in (4.13c) and (4.13d) have been decreased relative to their initial

values.

Corollary 4.9 (Maximal number of iterations required in Algorithm 4.6). Given positive numbers 𝜀1
and 𝜀2, it takes

𝑘 ≤
⌈
𝜅

4

ln

(
1

𝜀1

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)
2𝑘

≤ 𝜀1,

𝑘 ≤
⌈
𝜅

2

ln

(
1

𝜀2

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. (1) We first show that

− ln
(
𝜅 − 1
𝜅 + 1

)
≥ 2

𝜅
> 0

holds for all 𝜅 ≥ 1. At 𝜅 = 𝑒+1
𝑒−1 , we have

− ln
(
𝜅 − 1
𝜅 + 1

)
= − ln

(
1

𝑒

)
= 1 >

2

𝜅
= 2

𝑒 − 1
𝑒 + 1 ≈ 0.92.

We now show that

d

d𝜅

[
− ln

(
𝜅 − 1
𝜅 + 1

)]
≥ d

d𝜅

2

𝜅

holds for all 𝜅 > 1, which proves the claim. The derivative on the left is
−2

(𝜅−1) (𝜅+1) , while the

derivative on the right is
−2
𝜅2
. In view of 0 < 𝜅2 − 1 < 𝜅2 for all 𝜅 > 1, we conclude

−2
(𝜅 − 1) (𝜅 + 1) <

−2
𝜅2

< 0 for all 𝜅 > 1.

(2) Taking the reciprocal of the inequality shown above, we obtain

0 <
−1

ln

(
𝜅−1
𝜅+1

) ≤ 𝜅
2

(∗)

for all 𝜅 > 1.

(3) Given 𝜅 > 1, we easily infer that

(
𝜅−1
𝜅+1

)
2𝑘 ≤ 𝜀1 holds if and only if

𝑘 ≥ 1

2

− ln 𝜀1
− ln

(
𝜅−1
𝜅+1

) =
1

2

−1
ln

(
𝜅−1
𝜅+1

) ln (
1

𝜀1

)
. (∗∗)

In view of the inequality (∗) shown above, we obtain that

𝑘 ≥
⌈
𝜅

4

ln

(
1

𝜀1

)⌉
≥ 𝜅

4

ln

(
1

𝜀1

)
implies (∗∗), which proves the first claim.

The second claim follows similarly. □

28 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Remark 4.10 (on Theorem 4.8).

(𝑖) (4.13b) shows the Q-linear convergence of
(
𝑥 (𝑘)

)
to the solution 𝑥∗ in the 𝐴-norm.

(𝑖𝑖) The contraction factor is 0 ≤ 𝜅−1
𝜅+1 < 1, i. e., the convergence estimate depends on the ratio 𝜅

between the largest and the smallest generalized eigenvalue of 𝐴 w.r.t. 𝑀 . It is the purpose of the
preconditioner/inner product𝑀 to keep this ratio small.

(𝑖𝑖𝑖) In the extreme case 𝜅 = 1 we obtain convergence in one step. This happens precisely when𝑀 is a
multiple of 𝐴. However, we need a solve a linear system with𝑀 in every iteration. If we were able
to do that, we might as well solve 𝐴𝑥 = 𝑏 directly.

(𝑖𝑣) A good preconditioner is a compromise between a moderate generalized condition number 𝜅 and
the effort in applying𝑀−1. Finding a good preconditioner generally requires knowledge about the
problem at hand.

(𝑣) It is natural to measure convergence of the method in the 𝐴-norm of the error because, due to (4.2),
that is the quantity being minimized.

(𝑣𝑖) The estimates of Theorem 4.8 are worst-case estimates since they do not depend on the initial guess
𝑥 (0) . In fact, as can be seen in Figure 4.1c, the actual contraction factor for the objective values can
be significantly smaller for some initial guesses than the estimate (4.13c) suggests.

Figure 4.1 illustrates the convergence behavior of Algorithm 4.6 for a 2-dimensional example problem

from a number of different initial guesses 𝑥 (0) . We observe the typical “zig-zagging” behavior of the

iterates as they converge to the solution. This happens for any initial guess, except when 𝑥 (0) − 𝑥∗
happens to be a generalized eigenvector of 𝐴 w.r.t. 𝑀 , in which case convergence occurs in one step

due to 𝑥 (1) = 𝑥∗. (Such a case is not shown in Figure 4.1). Quiz 4.3: Suppose 𝐴, 𝑏 and𝑀 are given and

you consider a random distribution of initial values 𝑥 (0) in R𝑛 , which has a probability density. What

is the probability of hitting an initial value such that convergence happens in one step?

The zig-zagging behavior of the iterates 𝑥 (𝑘) , as well as the non-monotone behavior of ∥𝑟 (𝑘) ∥𝑀−1
have been analyzed in detail in the literature; see for instance Akaike, 1959; Forsythe, 1968; Nocedal,

Sartenaer, Zhu, 2002. Essentially what happens is that, asymptotically, the error 𝑥 (𝑘) − 𝑥∗ alternates
between elements of the eigenspaces belonging to the smallest and the largest eigenvalues of 𝐴 w.r.t.

𝑀 . This is ultimately a consequence of the fact that gradient descent is a memoryless method.

It has also been shown that a necessary condition in order for the norm of the gradient ∥𝑟 (𝑘) ∥𝑀−1 to
converge non-monotonically is that the condition number satisfy 𝜅 > 3 + 2

√
2 ≈ 5.83.

It remains to discuss stopping criteria. Several quantities may be of interest in this respect:

(𝑖) Are we happy with a point 𝑥 (𝑘) which is almost stationary, i. e., where ∥𝑟 (𝑘) ∥𝑀−1 is small?

(𝑖𝑖) Are we happy with a point 𝑥 (𝑘) whose objective value is near the optimal value, i. e., where

𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) is small, or equivalently, where ∥𝑥 (𝑘) − 𝑥∗∥𝐴 is small?

https://tinyurl.com/scoop-nlo 29

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(a) Iterates

(
𝑥 (𝑘)

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) The norm of the gradient

√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not

necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.13c).

Figure 4.1: Illustration of the convergence behavior of Algorithm 4.6 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the condition number is 𝜅 = 10.

30 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖𝑖𝑖) Are we happy with a point 𝑥 (𝑘) whose distance from the minimizer is small in the preconditioner-

induced norm𝑀 , i. e., where ∥𝑥 (𝑘) − 𝑥∗∥𝑀 is small?

The only of these three quantities which we can evaluate without knowing 𝑥∗ or 𝜙 (𝑥∗) is 𝛿 (𝑘) =
∥𝑟 (𝑘) ∥2

𝑀−1
. Therefore, many implementations use one of the following combinations of a relative and

an absolute criterion based on ∥𝑟 (𝑘) ∥𝑀−1 :

∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1, i. e., 𝛿 (𝑘) ≤ 𝜀2
rel
𝛿 (0) , (4.14a)

∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀abs, i. e., 𝛿 (𝑘) ≤ 𝜀2
abs
, (4.14b)

∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1 + 𝜀abs, i. e., (𝛿 (𝑘))1/2 ≤ 𝜀rel (𝛿 (0))1/2 + 𝜀abs, (4.14c)

∥𝑟 (𝑘) ∥𝑀−1 ≤ max

{
𝜀rel ∥𝑟 (0) ∥𝑀−1, 𝜀abs

}
, i. e., 𝛿 (𝑘) ≤ max

{
𝜀2
rel
𝛿 (0) , 𝜀2

abs

}
. (4.14d)

Let us see which consequences either of the implementable stopping criteria (4.14) has on the other

two quantities of interest:

Lemma 4.11 (Implications). The criteria from (4.14) imply, respectively,

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀

}
(4.15a)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ (1/
√
𝛼) 𝜀abs

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ (1/𝛼) 𝜀abs

}
(4.15b)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴 + (1/

√
𝛼) 𝜀abs

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 + (1/𝛼) 𝜀abs

}
(4.15c)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ max

{√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴, (1/

√
𝛼) 𝜀abs

}
∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ max

{
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 , (1/𝛼) 𝜀abs

} }
(4.15d)

Proof. The proof is part of homework problem 2.3. □

§ 4.3 Gradient Descent Method with Constant Step Sizes

We can show that the gradient descent method continues to converge Q-linearly when, in place of

the Cauchy step sizes, we choose constant step sizes 𝛼 (𝑘) ≡ 𝛼 within a certain range. We obtain as

above

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)

=
1

2

∥𝑟 (𝑘) ∥2
𝐴−1 + 𝛼 (𝑟

(𝑘))ᵀ𝑑 (𝑘) + 1

2

𝛼2(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) .

https://tinyurl.com/scoop-nlo 31

https://tinyurl.com/scoop-nlo

R. Herzog cbn

We leave 𝛼 open for now and insert the gradient descent relation 𝑟 (𝑘) = −𝑀 𝑑 (𝑘) to obtain

=
1

2

∥𝑟 (𝑘) ∥2
𝐴−1 − 𝛼 (𝑑

(𝑘))ᵀ𝑀 𝑑 (𝑘) + 1

2

𝛼2(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)

≤ 1

2

∥𝑟 (𝑘) ∥2
𝐴−1 − 𝛼 (𝑑

(𝑘))ᵀ𝑀 𝑑 (𝑘) + 1

2

𝛼2𝛽 (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) since 𝑑ᵀ𝐴𝑑 ≤ 𝛽 𝑑ᵀ𝑀 𝑑

=
1

2

∥𝑟 (𝑘) ∥2
𝐴−1 + 𝛼

(
1

2

𝛼 𝛽 − 1
)
(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) .

Here we need to convert the last term into 𝑑ᵀ𝑀𝐴−1𝑀 𝑑 , which is equal to 𝑟 ᵀ𝐴−1𝑟 , so that it can

be combined with the first term. We require that the coefficient 𝛼

(
1

2
𝛼 𝛽 − 1

)
is negative to obtain

convergence. Consequently, we use the first estimate in (2.10a):

≤ 1

2

∥𝑟 (𝑘) ∥2
𝐴−1 + 𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼 (𝑑 (𝑘))ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘) provided that 𝛼

(
1

2

𝛼 𝛽 − 1
)
< 0

=

[
1 + 2𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼

]
1

2

∥𝑟 (𝑘) ∥2
𝐴−1

=

[
1 + 2𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼

] (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
.

The condition that 𝛼

(
1

2
𝛼 𝛽 − 1

)
is negative amounts to 𝛼 ∈ (0, 2

𝛽
). It is precisely the midpoint 𝛼 = 1/𝛽

of this interval which minimizes this term and yields the optimal estimate, and the expression in [· · ·]
becomes

𝜅−1
𝜅

in this case.

Remark 4.12 (on the convergence of Algorithm 4.6 with constant step sizes).
(𝑖) We have shown that Algorithm 4.6, where Line 8 is replaced by 𝛼 (𝑘) B 𝛼 , still converges, provided

that 𝛼 ∈ (0, 2
𝛽
).

(𝑖𝑖) From a practical perspective, we therefore need to know at least an upper bound for the largest
eigenvalue 𝛽 of the generalized eigenvalue problem 𝐴𝑥 = 𝜆𝑀 𝑥 . When we have 𝛽 ≤ 𝛽estimate and
choose 𝛼 ∈ (0, 2

𝛽estimate

), we also have 𝛼 ∈ (0, 2
𝛽
).

(𝑖𝑖𝑖) The choice 𝛼 = 1

𝛽
yields the optimal estimate. In this case, we obtain

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅

) (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)

)
.

Since for all 𝜅 ≥ 1, we have
(
𝜅−1
𝜅+1

)
2 ≤ 𝜅−1

𝜅
, the contraction factor in the bound we obtained with

constant step sizes is worse than the one for the Cauchy step sizes; see (4.13a). Consequently, there
is no reason to prefer the gradient descent method with constant step sizes over the version with
Cauchy step sizes.

(𝑖𝑣) The Kantorovich inequality was not needed in the proof.

Figure 4.2 illustrates the convergence behavior of Algorithm 4.6 with constant step sizes for a 2-

dimensional example problem from a number of different initial guesses 𝑥 (0) .

32 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(a) Iterates

(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(c) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

(d) Iterates

(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(e) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(f) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

(g) Iterates

(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(h) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(i) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

Figure 4.2: Illustration of the convergence behavior of Algorithm 4.6 with various constant step sizes

instead of the Cauchy step size. The step sizes, from top to bottom, are 𝛼 ∈ {0.03, 0.10, 0.17}.
No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the admissible range of constant step sizes is 𝛼 ∈ (0, 2
𝛽
) = (0, 0.2).

https://tinyurl.com/scoop-nlo 33

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 4.4 Gradient Descent Method with Other Step Size Rules

Step size rules other than the Cauchy step sizes and constant step sizes have been proposed and

analyzed in the literature with the goal of breaking the non-efficient zig-zaggging pattern; among

them Barzilai, Borwein, 1988; De Asmundis, di Serafino, Riccio, et al., 2013; De Asmundis, di Serafino,

Hager, et al., 2014; Gonzaga, Schneider, 2015. We do not go into the details here but mention one

remarkable result from Gonzaga, 2016, Theorem 1. Suppose that 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀)
are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 , and 𝜅 B

𝛽

𝛼
is the generalized condition number.

Suppose that 𝜅 ≥ 1.06 and that

𝑘 B

⌈√
𝜅 ln

(
2

𝜀1

)⌉
.

holds. Consider the set of mutually distinct, precomputed step sizes{
𝛼 (𝑗) B

1

𝜔 (𝑗)

����𝜔 (𝑗) B 𝛽 − 𝛼
2

cos

(
1 + 2 𝑗
2𝑘

𝜋

)
+ 𝛽 + 𝛼

2

, 𝑗 = 0, 1, . . . , 𝑘 − 1
}
.

Then the gradient descent method Algorithm 4.6 with step sizes 𝛼 (𝑘) , applied in any order, requires at

most

𝑘 iterations until

(
𝜅 − 1
𝜅 + 1

)
2𝑘

≤ 𝜀1.

The interesting fact is that, compared to the estimate of Corollary 4.9 for the Cauchy step size, the

bound on the iteration numbers is proportional only to

√
𝜅 , not to 𝜅 . The result can be modified so that

it is not required to know the extremal eigenvalues exactly, but knowledge of an interval containing

them is sufficient.

We are going to obtain a similar complexity result for the conjgate gradient method in § 4.6.

§ 4.5 Gradient Descent Method as Discretized Gradient Flow

We conclude the discussion of the gradient descent method by interpreting it in another way. Consider

the differential equation

¤𝑥 (𝑡) = −∇𝑀 𝑓 (𝑥 (𝑡)), 𝑡 ≥ 0

𝑥 (0) = 𝑥 (0) .
(4.16)

This is known as the gradient flow associated with 𝑓 . Its stationary points are precisely the stationary

points of 𝑓 . Due to

d

d𝑡
𝑓 (𝑥 (𝑡)) = 𝑓 ′(𝑥 (𝑡)) ¤𝑥 (𝑡) = −𝑓 ′(𝑥 (𝑡))𝑀−1∇𝑓 (𝑥 (𝑡)) = −∥∇𝑓 (𝑥 (𝑡))∥2

𝑀−1 = −∥∇𝑀 𝑓 (𝑥 (𝑡))∥
2

𝑀 , (4.17)

the value of 𝑓 is decreasing along the path 𝑥 (𝑡).

When we discretize (4.16) by the explicit (forward) Euler method with time step size Δ𝑡 (𝑘) , we obtain

𝑥 (𝑘+1) − 𝑥 (𝑘)

Δ𝑡 (𝑘)
= −𝑀−1∇𝑓 (𝑥 (𝑘)),

34 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

or equivalently,

𝑥 (𝑘+1) = 𝑥 (𝑘) − Δ𝑡 (𝑘) 𝑀−1∇𝑓 (𝑥 (𝑘)) . (4.18)

This is precisely a step of the gradient descent method with step size Δ𝑡 (𝑘) . Therefore, we can interpret

the gradient descent method as a discretization of the continuous gradient flow equation.

End of Week 2

§ 4.6 Conjugate Gradient Method

The typical inefficient zig-zaggging pattern of the directions 𝑑 (𝑘) is a consequence of the fact that
gradient descent is a memoryless method. That is, we could restart the method at any iterate and it

would produce the same iterates, whether restarted or not. This is where the conjugate gradient
method (CG method, introduced in Hestenes, Stiefel, 1952) takes a different turn. It works with

search directions 𝑑 (𝑘) which are pairwise 𝐴-orthogonal (also known as 𝐴-conjugate), and builds a

memory of previously visited directions.

Definition 4.13 (Conjugate directions). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. A set of non-zero vectors
{𝑑 (0) , . . . , 𝑑 (𝑘) } ⊂ R𝑛 is termed 𝐴-conjugate if

(𝑑 (𝑖))ᵀ𝐴𝑑 (𝑗) = 0 for 0 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ≠ 𝑗 .

In other words, 𝐴-conjugate vectors are pairwise orthogonal w.r.t. the 𝐴-inner product. In particular,

{𝑑 (0) , . . . , 𝑑 (𝑘) } is a linearly independent set. (Quiz 4.4: Can you prove that?)

The CG method is a member of the class of conjugate direction methods. We begin by describing

the properties of a generic conjugate direction method first before we particularize to the CG method.

A conjugate direction method chooses its search directions 𝑑 (0) , 𝑑 (1) , . . . so that they are 𝐴-conjugate,

and the iterates satisfy

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) . (4.19)

The step size𝛼 (𝑘) is the Cauchy step size, whichminimizes the one-dimensional quadratic polynomial

𝛼 ↦→ 𝜙 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) .

That is, we have

𝛼 (𝑘) B − (𝑟
(𝑘))ᵀ𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
, (4.20)

compare (4.9). As in the gradient descent method, the residuals satisfy the recursion

𝑟 (𝑘+1) = 𝑟 (𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘) . (4.21)

Conjugate direction methods have the remarkable property that the sequence of one-dimensional

minimizations in the 𝐴-conjugate directions 𝑑 (0) , 𝑑 (1) , . . . is equivalent to the minimization over the

entire affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . .}. This is shown in the following result.

https://tinyurl.com/scoop-nlo 35

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 4.14 (Properties of conjugate direction methods). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. Given an
initial guess 𝑥 (0) and a set {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }, 𝑘 ≥ 1 of𝐴-conjugate search directions, suppose that the
iterates 𝑥 (0) , . . . , 𝑥 (𝑘) are generated according to (4.19) with Cauchy step size (4.20). Then the following
holds.

(𝑖)
(𝑟 (𝑘))ᵀ𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.22)

(𝑖𝑖) 𝑥 (𝑘) minimizes 𝜙 over the affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }.

Proof. We can show statement (𝑖) via induction over 𝑘 . For 𝑘 = 1,

(𝑟 (1))ᵀ𝑑 (0) = (𝐴𝑥 (1) − 𝑏)ᵀ𝑑 (0) by definition of the residual

= (𝐴𝑥 (0) + 𝛼 (0)𝐴𝑑 (0) − 𝑏)ᵀ𝑑 (0) by (4.19)

= (𝑟 (0))ᵀ𝑑 (0) + 𝛼 (0) (𝑑 (0))ᵀ𝐴𝑑 (0) by definition of the residual

= 0 since 𝛼 (0) is the Cauchy step size (4.20).

The induction step assumes (𝑟 (𝑘−1))ᵀ𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 2 and proceeds as follows.

(𝑟 (𝑘))ᵀ𝑑 (𝑘−1) = (𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑘−1) by the residual recursion (4.21)

= 0 since 𝛼 (𝑘−1) is the Cauchy step size (4.20).

For the remaining search directions 𝑑 (𝑖) , 𝑖 = 0, 1, . . . , 𝑘 − 2 we have

(𝑟 (𝑘))ᵀ𝑑 (𝑖) =
(
𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1)

)ᵀ
𝑑 (𝑖) by the residual recursion (4.21)

= (𝑟 (𝑘−1))ᵀ𝑑 (𝑖)︸ ︷︷ ︸
=0 by assumption

+𝛼 (𝑘−1) (𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑖)︸ ︷︷ ︸
=0 due to 𝐴-conjugacy

= 0.

For statement (𝑖𝑖) we consider the function ℎ : R𝑘 → R

ℎ(𝜎) B 𝜙

(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎 𝑗 𝑑
(𝑗)

)
.

ℎ is strongly convex (Quiz 4.5: Why?), and the unique minimizer 𝜎∗ is characterized by

𝜕ℎ(𝜎∗)
𝜕𝜎𝑖

= ∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎∗𝑗 𝑑
(𝑗)

)ᵀ
𝑑 (𝑖) = 0, 𝑖 = 0, . . . , 𝑘 − 1. (∗)

However, we already know that it is the iterate

𝑥 (𝑘) = 𝑥 (0) +
𝑘−1∑︁
𝑗=0

𝛼 (𝑗) 𝑑 (𝑗) ∈ 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }

36 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

which satisfies (∗), since

∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝛼 (𝑗) 𝑑 (𝑗)
)ᵀ
𝑑 (𝑖) = ∇𝜙 (𝑥 (𝑘))ᵀ𝑑 (𝑖) = (𝑟 (𝑘))ᵀ𝑑 (𝑖) = 0

holds for all 𝑖 = 0, . . . , 𝑘 − 1, as shown in statement (𝑖). □

Corollary 4.15 (Properties of conjugate direction methods). Any iterative method (4.19) using 𝐴-
conjugate directions 𝑑 (𝑘) and Cauchy step sizes (4.20) converges to the unique solution of (4.1) in at most
𝑛 steps.

Proof. The search directions 𝑑 (𝑘) are 𝐴-conjugate and thus linearly independent. Therefore,

span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑛−1) }

is all of R𝑛 , so that 𝑥 (𝑛) minimizes 𝜙 over all of R𝑛 by Lemma 4.14. □

In practice, the statement of Corollary 4.15 is weakened by floating point error. Moreover, the result of

Corollary 4.15 is not really relevant for high-dimensional problems since performing 𝑛 iterations is

prohibitively expensive. We will later see more practical converge estimates.

There are many possibilities to generate pairwise 𝐴-conjugate directions 𝑑 (𝑘) , each of which leads to a

different conjugate direction method. The conjugate gradient method (CGmethod) determines the

current direction 𝑑 (𝑘) as a linear combination of the previous direction 𝑑 (𝑘−1) and the current steepest

descent direction −𝑀−1𝑟 (𝑘) :11

𝑑 (0) B −𝑀−1𝑟 (0) for 𝑘 = 0,

𝑑 (𝑘) B −𝑀−1𝑟 (𝑘) + 𝛽 (𝑘) 𝑑 (𝑘−1) for 𝑘 ≥ 1.
(4.23)

The coefficient 𝛽 (𝑘) is determined in such a way that at least 𝑑 (𝑘) and 𝑑 (𝑘−1) are 𝐴-conjugate:

𝛽 (𝑘) B
(𝑟 (𝑘))ᵀ𝑀−1𝐴𝑑 (𝑘−1)

(𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑘−1)
. (4.24)

Interestingly, the algorithm obtained in this way generates search directions which are fully 𝐴-

conjugate, as shown in the following result.

Lemma 4.16 (Properties of the iterates in the CG algorithm, see Nocedal, Wright, 2006, Theorem 5.3).
Suppose that 𝑥 (0) ∈ R𝑛 is given and that the search directions {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } and the subsequent
iterates 𝑥 (1) , . . . , 𝑥 (𝑘) , 𝑘 ≥ 1, are generated according to (4.19)–(4.20), (4.23)–(4.24), where 𝛼 (𝑘) ≠ 0.12

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) } = span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.25)

span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } = 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.26)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1, (4.27)

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.28)

11
With 𝛽 (𝑘) = 0, we obtain again the steepest descent method (Algorithm 4.6).

12𝛼 (𝑘) = 0 would mean that 𝑥 (𝑘) is the unique solution 𝑥∗. Due to the form of the Cauchy step (4.20), this is clear for 𝑘 = 0,

as the nominator is ∥𝑟 (𝑘) ∥𝑀−1 . (4.22) shows that this is also true for 𝑘 > 0.
GM

https://tinyurl.com/scoop-nlo 37

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The subspace

K (𝑘+1) (𝐴𝑀−1; 𝑟 (0)) B span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } (4.29)

is termed the Krylov subspace (of order 𝑘 + 1) of the matrix 𝐴𝑀−1 with initial vector 𝑟 (0) . Therefore,
the CG method is a representative of the class of Krylov subspace methods. The properties (4.25)
and (4.26) imply that the method creates, simultaneously, an expanding sequence of𝑀−1-orthogonal
basis vectors of the spaces K (𝑘) (𝐴𝑀−1; 𝑟 (0)), as well as an expanding sequence of 𝐴-orthogonal basis

vectors of the spaces𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)).

Proof. We first prove (4.25)–(4.27), by induction. For 𝑘 = 0, statement (4.25) holds trivially. Statement

(4.26) holds since the CG method starts with 𝑑 (0) = −𝑀−1𝑟 (0) . Statement (4.27) is void for 𝑘 = 0.

Suppose now that (4.25) and (4.26) have been shown up to some 𝑘 ≥ 0. We need to show that they

also hold for 𝑘 + 1. By hypothesis,

𝑟 (𝑘) ∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },
𝑑 (𝑘) ∈ 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },

hence 𝐴𝑑 (𝑘) ∈ 𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }
= span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }.

Due to the residual recursion (4.21), we therefore have

𝑟 (𝑘+1) = 𝑟 (𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘)

∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } + span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }
= span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }. (∗)

Due to the induction hypothesis for (4.25), the same statement (∗) holds when 𝑘 + 1 is replaced by a

smaller index. Therefore, we have shown that

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) } ⊆ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }

holds. Now for the reverse inequality. By the induction hypothesis for (4.26), we find

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ 𝐴 span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } = span{𝐴𝑑 (0) , 𝐴𝑑 (1) , . . . , 𝐴𝑑 (𝑘) }.

By the residual recursion (4.21), specifically

𝐴𝑑 (𝑖) =
1

𝛼 (𝑖)
(
𝑟 (𝑖+1) − 𝑟 (𝑖)

)
∈ span{𝑟 (𝑖) , 𝑟 (𝑖+1) }

for 𝑖 = 0, 1, . . . , 𝑘 , it follows that

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

When combined with the induction hypothesis for (4.25), i. e.,

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } = span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) },

38 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

we find the desired reverse inequality

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) } ⊆ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

Thus the induction step for (4.25) is complete.

To see (4.26),

span{𝑑 (0) , . . . , 𝑑 (𝑘) , 𝑑 (𝑘+1) }
= span{𝑑 (0) , . . . , 𝑑 (𝑘) , 𝑀−1𝑟 (𝑘+1) } by (4.23)

= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , 𝑟 (𝑘+1) } by (4.26)

= 𝑀−1 span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) , 𝑟 (𝑘+1) } by (4.25)

= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , (𝐴𝑀−1)𝑘+1 𝑟 (0) } by (4.25) for 𝑘 + 1.

This concludes the induction step for (4.26).

Next we address the𝐴-conjugacy of search directions, (4.27). By the induction hypothesis, the directions

𝑑 (0) , . . . , 𝑑 (𝑘) are pairwise 𝐴-conjugate. Consider

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑖) = (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) (∗∗)

for 𝑖 = 0, . . . , 𝑘 . In case 𝑖 = 𝑘 , we have

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑘) = 0

by construction of the search direction 𝑑 (𝑘+1) , see (4.23) and (4.24). When 𝑖 ≤ 𝑘 − 1, we argue as follows.
From (4.26), we obtain

𝑀−1𝐴𝑑 (0) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) },
𝑀−1𝐴𝑑 (1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) , 𝑑 (2) },

...
...

...

𝑀−1𝐴𝑑 (𝑘−1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , . . . , (𝐴𝑀−1)𝑘−1 𝑟 (0) } ⊆ span{𝑑 (0) , . . . , 𝑑 (𝑘) }.

We thus find that, for any 𝑖 ≤ 𝑘 − 1, the term (𝑟 (𝑘+1))ᵀ𝑀−1𝐴𝑑 (𝑖) in (∗∗) belongs to

(𝑟 (𝑘+1))ᵀ span{𝑑 (0) , . . . , 𝑑 (𝑖+1) } = span{(𝑟 (𝑘+1))ᵀ𝑑 (0) , . . . , (𝑟 (𝑘+1))ᵀ𝑑 (𝑖+1) }.

By (4.22), however, (𝑟 (𝑘+1))ᵀ𝑑 (𝑗) = 0 for 𝑗 = 0, . . . , 𝑘 . Therefore, (∗∗) reduces to

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑖) = 𝛽 (𝑘+1) (𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) . (∗∗∗)

By the induction hypothesis, this is equal to zero, which concludes the induction step for (4.27).

Finally, we consider the 𝑀−1-conjugacy of residuals, (4.28), for 𝑘 ≥ 1. We do not need an induction

argument for this. We consider two cases for (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) :

https://tinyurl.com/scoop-nlo 39

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(1) In case 𝑖 = 𝑘 − 1, we have

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘−1) =
{ (□)︷ ︸︸ ︷
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑘−1) + 𝛽 (𝑘−1) 𝑑 (𝑘−2)) for 𝑘 ≥ 2

(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑘−1))︸ ︷︷ ︸
(□)

for 𝑘 = 1

by the residual recursion (4.21) and the construction of search directions (4.23). Since the Cauchy

step size satisfies 𝛼 (𝑘−1) = − (𝑑
(𝑘−1))ᵀ𝑟 (𝑘−1)

(𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑘−1) , the term (□) is equal to zero for all 𝑘 ≥ 1. Let us

consider the remaining terms when 𝑘 ≥ 2. We obtain

(𝑟 (𝑘−1))ᵀ𝑑 (𝑘−2) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1))ᵀ(𝑑 (𝑘−2)) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘−1) = 0 holds for all 𝑘 ≥ 1.

(2) in case 𝑖 < 𝑘 − 1, we have

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) =
{
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑖) + 𝛽 (𝑖) 𝑑 (𝑖−1)) for 𝑖 ≥ 1

(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑖)) for 𝑖 = 0

When expanding, we obtain terms of the types (note 𝑖 < 𝑘 − 1)
(𝑟 (𝑘−1))ᵀ𝑑 (𝑖) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑖) = 0 owing to the 𝐴-conjugacy of search directions,

(𝑟 (𝑘−1))ᵀ𝑑 (𝑖−1) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑖−1) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) = 0 holds for all 𝑘 ≥ 1 and 0 ≤ 𝑖 < 𝑘 − 1. □

Using the properties of the iterates shown above, the equations (4.20) for 𝛼 (𝑘) as well as (4.24) for 𝛽 (𝑘)

in the CG method can be equivalently formulated as follows:

𝛼 (𝑘) = − (𝑟
(𝑘))ᵀ𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
by the Cauchy step size formula (4.20)

=
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
− 𝛽 (𝑘) (𝑟

(𝑘))ᵀ𝑑 (𝑘−1)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
by the search direction recursion (4.23)

=
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
by (4.22) (4.20’)

and

𝛽 (𝑘+1) =
(𝑟 (𝑘+1))ᵀ𝑀−1𝐴𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
by the orthogonalization coefficient (4.24)

=
(𝑟 (𝑘+1))ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘))
(𝑑 (𝑘))ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘))

by the residual recursion (4.21)

=
(𝑟 (𝑘+1))ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘))

(−𝑀−1𝑟 (𝑘) + 𝛽 (𝑘) 𝑑 (𝑘−1))ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘))
by the construction of search directions (4.23)

=
(𝑟 (𝑘+1))ᵀ𝑀−1𝑟 (𝑘+1)

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘)
by (4.22) and (4.25). (4.24’)

40 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

The relations (4.20’) and (4.24’) are also true for 𝑘 = 0.

We have now obtained the common form of the CG method w.r.t. the 𝑀-inner product, commonly

referred to as the preconditioned conjugate gradient method.

Algorithm 4.17 (Conjugate gradient method for (4.1) w.r.t. the𝑀-inner product).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏

1: Set 𝑘 B 0

2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual
3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient
4: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0))∥2𝑀 = ∥𝑟 (0) ∥2

𝑀−1

5: while stopping criterion not met do
6: Set 𝑞 (𝑘) B 𝐴𝑑 (𝑘)

7: Set 𝜃 (𝑘) B (𝑞 (𝑘))ᵀ𝑑 (𝑘)
8: Set 𝛼 (𝑘) B 𝛿 (𝑘)/𝜃 (𝑘) // evaluate the Cauchy step size
9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // update the iterate
10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘) + 𝛼 (𝑘)𝑞 (𝑘) // update the residual
11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the new negative𝑀-gradient
12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑟 (𝑘+1) ∥2

𝑀−1

13: Set 𝛽 (𝑘+1) B 𝛿 (𝑘+1)/𝛿 (𝑘) // evaluate the 𝐴-orthogonalization coefficient
14: Set 𝑑 (𝑘+1) B 𝑑 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘) // make 𝑑 (𝑘+1) 𝐴-orthogonal w.r.t. 𝑑 (𝑘)

15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑥 (𝑘)

Remark 4.18 (on Algorithm 4.17).

(𝑖) From Lemma 4.16 we know that the CGmethod generates pairwise𝐴-orthogonal directions, although
it only needs to orthogonalize any new direction 𝑑 (𝑘+1) against the most recent one, 𝑑 (𝑘) . This
phenomenon, known as short-term recurrence, is possible due to the symmetry of 𝐴.

(𝑖𝑖) The conjugate thus keeps a memory of previously visited directions, although this memory is mainly
implicit. As shown in Algorithm 4.17, we can implement the method with a constant amount of
storage.

(𝑖𝑖𝑖) The implementation of the CG method is very similar to the steepest descent method (Algorithm 4.6).
The only (but significant!) difference lies in the fact that we 𝐴-orthogonalize the steepest descent
direction against 𝑑 (𝑘) before we use it as the new search direction 𝑑 (𝑘+1) .

(𝑖𝑣) The name conjugate gradient method is a bit of a misnomer, since it is not the gradients which
are 𝐴-conjugate, but rather the search directions 𝑑 (𝑘) .

https://tinyurl.com/scoop-nlo 41

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑣) Remark 4.7 remains valid for the conjugate gradient method as well, with minor modifications. We
need to store one additional vector since 𝑑 (𝑘) and 𝑑 (𝑘+1) are needed simultaneously.

(𝑣𝑖) The stopping criteria (4.14) and their consequences (4.15) continue to hold since they depend on the
same computable quantity ∥𝑟 (𝑘) ∥𝑀−1 as in the steepest descent method.

Our next goal is to establish a convergence result for the conjugate gradient method, and to compare

it to Theorem 4.8 for the steepest descent method with Cauchy step size. A major difference is that we

will not obtain a result about the reduction of the error from iteration to iteration, but rather a result

about the reduction of the error compared with its initial value.

Theorem 4.19 (Convergence of Algorithm 4.17, compare Theorem 4.8). Suppose that 𝐴 ∈ R𝑛×𝑛 are
𝑀 are both s. p. d., 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴
w.r.t. 𝑀 . Then for any choice of the initial guess 𝑥 (0) , the conjugate gradient method converges to the
unique solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the
estimates13

𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)
2𝑘 (

𝜙 (𝑥 (0)) − 𝜙 (𝑥∗)
)

(4.30a)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴, (4.30b)

Moreover, the objective values 𝜙 (𝑥 (𝑘)) and thus the norm of the error ∥𝑥 (𝑘) − 𝑥∗∥𝐴 are monotonically
decreasing.

Proof. Since the search directions, by (4.26), span𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)), we have

𝑥 (𝑘) − 𝑥 (0) ∈ 𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)) .

In other words, we have

𝑥 (𝑘) − 𝑥 (0) = 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)

for some polynomial 𝑞 (𝑘−1) in the matrix𝑀−1𝐴 of degree at most 𝑘 − 1. Abbreviating 𝑒 (𝑘) B 𝑥 (𝑘) − 𝑥∗
and using 𝐴𝑒 (0) = 𝐴𝑥 (0) −𝐴𝑥∗ = 𝑟 (0) , we can manipulate this equation into

𝑒 (𝑘) = 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)

= 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴𝑒 (0)

=
[
Id + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴

]
𝑒 (0)

= 𝑝 (𝑘) (𝑀−1𝐴) 𝑒 (0) ,

where now 𝑝 (𝑘) is a polynomial of degree at most 𝑘 satisfying 𝑝 (𝑘) (0) = 1.

By construction, the conjugate gradient method minimizes ∥𝑒 (𝑘) ∥𝐴 in every iteration. We can now

express this in terms of a minimization over the vector space Π𝑘 of polynomials of degree ≤ 𝑘 :

∥𝑒 (𝑘) ∥𝐴 = min

{
∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
. (4.31)

13
compare (4.13c), (4.13d)

42 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We expand the initial error 𝑒 (0) in terms of the basis of eigenvectors of 𝐴 w.r.t. 𝑀 ; see (2.6), (2.7).

Suppose we denote the generalized eigenpairs by (𝜆 (𝑗) , 𝑣 (𝑗)), we can write

𝑒 (0) =
𝑛∑︁
𝑗=1

𝛾 (𝑗)𝑣 (𝑗)

with some coefficients 𝛾 (𝑗) determined by 𝑒 (0) . We can thus manipulate the objective in the minimiza-

tion problem above as follows:

∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴 =

𝑝 (𝑀−1𝐴) (𝑛∑︁
𝑗=1

𝛾 (𝑗)𝑣 (𝑗)
)

𝐴

=

 𝑛∑︁
𝑗=1

𝛾 (𝑗)𝑝 (𝑀−1𝐴) 𝑣 (𝑗)

𝐴

In view of 𝐴𝑣 (𝑗) = 𝜆 (𝑗)𝑀 𝑣 (𝑗) and thus𝑀−1𝐴𝑣 (𝑗) = 𝜆 (𝑗)𝑣 (𝑗) , this is

=

 𝑛∑︁
𝑗=1

𝛾 (𝑗)𝑝 (𝜆 (𝑗)) 𝑣 (𝑗)

𝐴
.

By pulling the maximal value of |𝑝 (𝜆 (𝑗)) | out of the sum (Quiz 4.6: Can you fill in the details why this

is possible?), we can estimate this quantity further:

≤ max

𝑗=1,...,𝑛
|𝑝 (𝜆 (𝑗)) |

 𝑛∑︁
𝑗=1

𝛾 (𝑗)𝑣 (𝑗)

𝐴

= max

𝑗=1,...,𝑛
|𝑝 (𝜆 (𝑗)) |

𝑒 (0)

𝐴
.

Combining this with (4.31), we see

∥𝑒 (𝑘) ∥𝐴 ≤ min

{
max

𝑗=1,...,𝑛
|𝑝 (𝜆 (𝑗)) | ∥𝑒 (0) ∥𝐴

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
= min

{
max

𝑗=1,...,𝑛
|𝑝 (𝜆 (𝑗)) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴

and since the eigenvalues lie in the interval [𝛼, 𝛽],

∥𝑒 (𝑘) ∥𝐴 ≤ min

{
max

𝑧∈[𝛼,𝛽]
|𝑝 (𝑧) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴 . (4.32)

We have thus estimated
∥𝑒 (𝑘) ∥𝐴
∥𝑒 (0) ∥𝐴

by the smallest maximal absolute value any polynomial 𝑝 ∈ Π𝑘 with
𝑝 (0) = 1 can attain on the interval [𝛼, 𝛽] spanning all generalized eigenvalues of 𝐴 w.r.t. 𝑀 .

The question about the optimal polynomial in (4.32) can be answered by Chebyshev polynomials; we

refer you to Elman, Silvester, Wathen, 2014, Theorem 2.4 if you want to know more details. It turns

out that the optimal value

min

{
max

𝑧∈[𝛼,𝛽]
|𝑝 (𝑧) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}

https://tinyurl.com/scoop-nlo 43

https://tinyurl.com/scoop-nlo

R. Herzog cbn

depends only on 𝜅 = 𝛽/𝛼 and it is given by

= 2

[(√
𝜅 + 1
√
𝜅 − 1

)𝑘
+

(√
𝜅 − 1
√
𝜅 + 1

)𝑘]−1
≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
.

From there, we finally obtain

∥𝑒 (𝑘) ∥𝐴 ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
∥𝑒 (0) ∥𝐴,

which is precisely (4.32). Squaring both sides and dividing by 2, we also obtain (4.30a). □

Corollary 4.20 (Maximal number of iterations required in Algorithm 4.17, compare Corollary 4.9).
Given positive numbers 𝜀1 and 𝜀2, it takes

𝑘 ≤
⌈√
𝜅

4

ln

(
2

𝜀1

)⌉
iterations until 2

(√
𝜅 − 1
√
𝜅 + 1

)
2𝑘

≤ 𝜀1,

𝑘 ≤
⌈√
𝜅

2

ln

(
2

𝜀2

)⌉
iterations until 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. The proof is similar to Corollary 4.9 and it uses that

− ln
(√
𝜅 − 1
√
𝜅 + 1

)
≥ 2

√
𝜅
> 0

holds for all 𝜅 ≥ 1. □

Remark 4.21 (on Theorem 4.19).
(𝑖) The estimates (4.30a) and (4.32) establish the R-linear convergence of the respective quantities to

zero.

(𝑖𝑖) Compared to the estimates (4.13c) and (4.13d) for the gradient descent method, we obtain the

reduction factor
(√
𝜅−1√
𝜅+1

)𝑘
in place of

(
𝜅−1
𝜅+1

)𝑘 , which is generally much better.

(𝑖𝑖𝑖) The superiority of the CG method compared to the gradient descent method is also reflected in
the estimates for the maximal iteration numbers to achieve a certain reduction in the quantities
𝜙 (𝑥 (𝑘)) −𝜙 (𝑥∗) and ∥𝑥 (𝑘) − 𝑥∗∥𝐴, respectively. The bounds for the maximal iteration numbers are
proportional to

√
𝜅 for the CG method, not proportional to 𝜅.

(𝑖𝑣) As was the case for Theorem 4.8, the estimates of Theorem 4.19 are worst-case estimates since they
do not depend on the initial guess 𝑥 (0) . In fact, as can be seen in Figure 4.3c and Figure 4.4b, the
actual contraction factor for the objective values can be significantly smaller for some initial guesses
than the estimate (4.30a) suggests.

44 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(a) Iterates

(
𝑥 (𝑘)

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) The norm of the gradient

√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not

necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.30a).

Figure 4.3: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the condition number is 𝜅 = 10.

https://tinyurl.com/scoop-nlo 45

https://tinyurl.com/scoop-nlo

R. Herzog cbn

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(a) The norm of the gradient

√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not

necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(b) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.30a).

Figure 4.4: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. Here𝐴 is a randommatrix of dimension 100×100
with eigenvalues in the interval [𝛼, 𝛽] = [1, 100] so that the condition number is 𝜅 = 100.

(𝑣) Other informative error bounds than (4.30a) and (4.32) and convergence results can be obtained
by proceeding as in the proof of Theorem 4.19 and choosing other polynomials to bound the error
with.GM

The iterates of the conjugate gradient method have a further remarkable property, which we will

exploit later on:

Lemma 4.22 (Growth of the distance from the initial guess
14
). Consider the iterates 𝑥 (𝑘) of the conjugate

gradient method (Algorithm 4.17). As long as 𝑥 (𝑘) ≠ 𝑥∗ holds, the sequence ∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 is strictly
increasing.

Note: The steepest descent method does not have this property.

Proof. Statement (𝑖) in Lemma 4.14 implies that

(𝑟 (𝑘))ᵀ(𝑥 (𝑘) − 𝑥 (0)) =
𝑘−1∑︁
𝑖=0

𝛼𝑖 (𝑟 (𝑘))ᵀ𝑑 (𝑖)︸ ︷︷ ︸
=0

= 0 for all 𝑘 ≥ 0. (∗)

We now show by induction that (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) > 0 holds for 𝑘 ≥ 1. Initially, for 𝑘 = 1,

14
In the literature, we find this result often only for the case 𝑥 (0) = 0, see for instance Nocedal, Wright, 2006, Theorem 7.3.

46 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

statement (𝑖) in Lemma 4.14 once again yields

(𝑥 (1) − 𝑥 (0))ᵀ𝑀 𝑑 (1) = 𝛼 (0)

=0︷ ︸︸ ︷
(𝑑 (0))ᵀ𝑀 (−𝑀−1𝑟 (1) + 𝛽 (1)𝑑 (0))

= 𝛼 (0)︸ ︷︷ ︸
>0

𝛽 (1)︸ ︷︷ ︸
>0

(𝑑 (0))ᵀ𝑀 𝑑 (0)︸ ︷︷ ︸
>0

> 0.

We now proceed with the step from index 𝑘 to 𝑘 + 1:

(𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘+1) = (𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘))
= 𝛽 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) by (∗)
= 𝛽 (𝑘+1) (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘)

= 𝛽 (𝑘+1) (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) + 𝛼 (𝑘)𝛽 (𝑘+1) (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)

> 0. (∗∗)

Due to the induction hypothesis as well as 𝛼 (𝑘) > 0, 𝛽 (𝑘+1) > 0 and (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) > 0, the entire

expression is positive.

The desired result now easily follows from

∥𝑥 (𝑘+1) − 𝑥 (0) ∥2𝑀 = ∥𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) − 𝑥 (0) ∥2𝑀
= ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 + 2 𝛼 (𝑘)︸ ︷︷ ︸

>0

(𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘)︸ ︷︷ ︸
>0

+ (𝛼 (𝑘))2 ∥𝑑 (𝑘) ∥2𝑀︸ ︷︷ ︸
>0

. (∗∗∗)

□

The relations (∗∗) and (∗∗∗) allow us to compute the informative quantities

𝜔 (𝑘) B ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 (4.33a)

𝜉 (𝑘) B (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) (4.33b)

𝛾 (𝑘) B ∥𝑑 (𝑘) ∥2𝑀 (4.33c)

on the side without any noticeable effort. This can be achieved by inserting, at the appropriate positions

in Algorithm 4.17 (Quiz 4.7: Where?), the relations

𝜔 (0) B 0, 𝜔 (𝑘+1) B 𝜔 (𝑘) + 2𝛼 (𝑘)𝜉 (𝑘) + (𝛼 (𝑘))2 𝛾 (𝑘) see (∗∗∗) (4.34a)

𝜉 (0) B 0, 𝜉 (𝑘+1) B 𝛽 (𝑘+1) (𝜉 (𝑘) + 𝛼 (𝑘)𝛾 (𝑘)) see (∗∗) (4.34b)

𝛾 (0) B 𝛿 (0) , 𝛾 (𝑘+1) B 𝛿 (𝑘+1) + (𝛽 (𝑘+1))2 𝛾 (𝑘) (confirm). (4.34c)

The remarkable fact about this is the possibility to keep track of (4.33) without requiring access to the

matrix𝑀 , or even matrix-vector products with𝑀 . Notice that we usually do not have the latter since

we only need matrix-vector products with𝑀−1 in Algorithm 4.17.

End of Week 3

https://tinyurl.com/scoop-nlo 47

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 5 Line Search Methods for Nonlinear Unconstrained Problems

We consider in this section a large class of methods to solve general, nonlinear unconstrained prob-

lems

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The methods we consider are so-called line search methods. In every iteration, a line search method

first determines a search direction and subsequently finds a step size (or step length) 𝛼 (𝑘) , that
leads to the next iterate via

𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) .

Assumption 5.1. Throughout § 5 we are assuming that 𝑓 : R𝑛 → R is a 𝐶1 function.

Most line search methods, in particular the ones we consider, require that 𝑑 (𝑘) is a descent direction
for the objective 𝑓 at the current iterate 𝑥 (𝑘) , i. e., that

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0 (5.1)

holds, see Definition 4.4. This implies that we have descent at least for sufficiently small positive step

sizes 𝛼 (𝑘) ,
𝑓 (𝑥 (𝑘+1)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘))

and it motivates the term descent method.

Most methods
15
we are discussing in § 5 determine the search direction 𝑑 (𝑘) by considering a local

quadratic model of the ojective:

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘)𝑑. (5.2)

This model uses the data 𝑓 (𝑥 (𝑘)) and 𝑓 ′(𝑥 (𝑘)) at the iterate 𝑥 (𝑘) and it agrees with 𝑓 regarding that

data at 𝑑 = 0:

𝑞 (𝑘) (0) = 𝑓 (𝑥 (𝑘))
and (𝑞 (𝑘))′(0) = 𝑓 ′(𝑥 (𝑘))

The matrix 𝐻 (𝑘) is the Hessian of the model, briefly: the model Hessian. In case 𝐻 (𝑘) = 𝑓 ′′(𝑥 (𝑘)),
the model 𝑞 (𝑘) is the second-order Taylor polynomial of 𝑓 at 𝑥 (𝑘) . However, in general, the model

Hessian is chosen to be any symmetric and possibly positive definite matrix. In fact, different line

search methods differ w.r.t. their choice of the model Hessians 𝐻 (𝑘) , and thus with respect to the

search directions they use.

The search direction 𝑑 (𝑘) is obtained by minimizing (possibly only to a certain accuracy) the quadratic

polynomial 𝑞 (𝑘) :
Minimize 𝑞 (𝑘) (𝑑), 𝑑 ∈ R𝑛 . (5.3)

As we know from Lemma 4.1, the following cases can occur:

15
with the exception of nonlinear conjugate gradient methods

48 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖) When 𝐻 (𝑘) is s. p. d., then the unique solution of (5.3) is given by the unique solution of the

linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.4)

(𝑖𝑖) When 𝐻 (𝑘) is symmetric and only positive semidefinite, then (5.3) is either unbounded, or else

has infinitely many minimizers. In any case, the minimizers of (5.3) are precisely the solutions

of the linear system (5.4).
16

(𝑖𝑖𝑖) When 𝐻 (𝑘) is symmetric but not positive semidefinite (i. e., at least one eigenvalue of 𝐻 (𝑘) is
negative), then (5.3) is an unbounded problem. However, the linear system (5.4) may still be

uniquely solvable, or solvable with multiple solutions, or not solvable. The solutions of the linear

systems (if any) are either all saddle points
17
of 𝑞 (𝑘) , or they are all global maximizers. (Quiz 5.1:

Is this statement clear?)

To solve (5.3) and (5.4), respectively, we can employ the conjugate gradient (CG) method from § 4.6.

However, it would be useful to enhance it so that it checks and reacts to the potential occurrence of

non-positive eigenvalues in the model Hessian 𝐻 (𝑘) . We will see more details on that later.

§ 5.1 A Generic Descent Method

We begin by considering the following model algorithm of a generic line-search descent method:

Algorithm 5.2 (generic line-search descent method).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Output: approximate stationary point of (UP)
1: Set 𝑘 B 0

2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘) such that 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0 // descent direction
4: Choose a step size 𝛼 (𝑘) > 0 such that 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘)) // obtain descent
5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // take the step
6: Set 𝑘 B 𝑘 + 1
7: end while
8: return 𝑥 (𝑘)

In order to analyze the convergence properties of this generic algorithm and to determine further

requirements for the descent directions and step sizes, we ignore the stopping criterion for now, so that

Algorithm 5.2 produces infinite sequences of iterates 𝑥 (𝑘) , search directions 𝑑 (𝑘) and step sizes 𝛼 (𝑘) .
In practice, of course, we will use a stopping criterion to be discussed later.

16
The solution set of the linear system (5.4) is either the empty set or an affine subspace of R𝑛 whose dimension agrees with

the dimension of ker𝐻 (𝑘) .
17
A stationary point 𝑥 of 𝑓 is called a saddle point of 𝑓 if the Hessian 𝑓 ′′ (𝑥) is indefinite, i. e., has at least one positive and
at least one negative eigenvalue.

https://tinyurl.com/scoop-nlo 49

https://tinyurl.com/scoop-nlo

R. Herzog cbn

We will see that, in general, we cannot expect the iterates 𝑥 (𝑘) to converge overall, but there may be

convergent subsequences with different limit points (although this rarely occurs in practice). We recall

that the limit points of convergent subsequences

(
𝑥 (𝑘

(ℓ)))
are precisely the accumulation points of(

𝑥 (𝑘)
)
.

We would like the accumulation points of the sequence of iterates{𝑥 (𝑘) } to be “special” points. There-

fore, it would be desirable to have the following property:

When 𝑥∗ is an accumulation of

(
𝑥 (𝑘)

)
, then 𝑓 ′(𝑥∗) = 0, i. e., 𝑥∗ is stationary. (5.5)

The relatively weak property (5.5) is often referred to as the global convergence of an algorithm.

In particular, global convergence does not mean that one obtains a global minimizer. By contrast, it

means that one obtains a convergence result (5.5) that is valid for arbitrary initial guesses 𝑥 (0) . Notice
that (5.5) does not assert that an accumulation point even exists.

18
It turns out that, in general, we

cannot expect more. Under additional assumptions on 𝑓 , one may be able to show stronger results,

for instance

∥∇𝑓 (𝑥 (𝑘))∥ has an accumulation point at 0. (5.6a)

The entire sequence ∥∇𝑓 (𝑥 (𝑘))∥ converges to 0. (5.6b)

Accumulation points of

(
𝑥 (𝑘)

)
are stationary. (5.6c)

The entire sequence

(
𝑥 (𝑘)

)
converges to a stationary point. (5.6d)

The entire sequence

(
𝑥 (𝑘)

)
converges to a local miminizer. (5.6e)

We will now investigate the minimal requirements on the search directions 𝑑 (𝑘) and step sizes 𝛼 (𝑘)

in Algorithm 5.2 that ensure global convergence in the sense of (5.5). To this end, two properties are

essential:

(1) The search directions 𝑑 (𝑘) are “good descent directions”.

(2) The step sizes 𝛼 (𝑘) are chosen so that the achievable descent along the search direction 𝑑 (𝑘) is
“sufficiently exploited”.

We use the user-defined𝑀-inner product in the space of optimization variables and search directionsR𝑛 .

Since all norms in R𝑛 are equivalent, all concepts and properties of algorithms in the remainder of § 5

are qualitatively independent of the choice of𝑀 . However, the choice of𝑀 is still important through

its impact on the convergence properties and stopping criteria.

Requirements on the Descent Directions

Definition 5.3 (admissible search directions). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝑑 (𝑘) of search

18
Indeed, an example such as 𝑓 (𝑥) = 𝑥 for 𝑥 ∈ R shows that any algorithm with the global convergence property (5.5)

couldn’t produce an accumulation point, since 𝑓 has no stationary point.

50 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

directions is termed admissible in case

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) → 0. (5.7)

Note: The admissibility is a property that the sequence of search directions generated by a particular

algorithm, applied to a particular problem (objective), started from a particular initial guess may or

may not possess. One is, of course, interested in designing algorithms which generate admissible

search directions for arbitrary objectives 𝑓 and initial guesses 𝑥 (0) .

The expression
𝑓 ′ (𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

is the directional derivative of 𝑓 at 𝑥 (𝑘) in the direction 𝑑 (𝑘) normalized.

Therefore, we can interpret the condition (5.7) as follows: when the directional derivatives in the

normalized search directions converge to zero, then it is due to the derivatives converging to zero and

not due to the search directions becoming inefficient. This reflects our first goal (item (1) above) that

the search directions are “good descent directions”.

Condition (5.7) is purely qualitative. By contrast, the angle condition

cos ∡
(
−∇𝑀 𝑓 (𝑥 (𝑘))︸ ︷︷ ︸

steepest descent direction

,

chosen search direction︷ ︸︸ ︷
𝑑 (𝑘)

)
=
(−∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘))𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀

=
−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀
≥ 𝜂 (5.8)

with some 𝜂 ∈ (0, 1) is a stronger, quantitative condition, which is moreover easy to verify. It means

that the angles between the chosen search directions 𝑑 (𝑘) and the directions of steepest descent

−∇𝑀 𝑓 (𝑥 (𝑘)) are uniformly bounded away from 90
◦
.

Lemma 5.4 (angle condition implies admissibility). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) the sequences of iterates
and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the angle condition
(5.8) holds with some 𝜂 ∈ (0, 1), then the sequence 𝑑 (𝑘) of search directions is admissible.

Proof. We have

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) =
(
∇𝑓 (𝑥 (𝑘)), 𝑑 (𝑘)

)
=

(
∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘)

)
𝑀
.

The angle condition (5.8) implies

− 𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
≥ 𝜂 ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 = 𝜂 ∥ 𝑓 ′(𝑥 (𝑘))ᵀ∥𝑀−1 ≥ 0.

When the left-hand term goes to zero, then 𝑓 ′(𝑥 (𝑘)) must go to zero as well. □

As we already mentioned, almost all of the algorithms we will discuss in detail determine their search

directions from the solutions of linear systems

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.4)

https://tinyurl.com/scoop-nlo 51

https://tinyurl.com/scoop-nlo

R. Herzog cbn

with an s. p. d. matrix 𝐻 (𝑘) , the model Hessian. In view of

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝑓 ′(𝑥 (𝑘))
[
(𝐻 (𝑘))−1 ∇𝑓 (𝑥 (𝑘))

]
= −∇𝑓 (𝑥 (𝑘))ᵀ (𝐻 (𝑘))−1 ∇𝑓 (𝑥 (𝑘)) < 0, (5.9)

𝑑 (𝑘) is a descent direction as long as 𝑓 ′(𝑥 (𝑘)) ≠ 0 holds. However, when 𝐻 (𝑘) is not positive definite,
then 𝑑 (𝑘) may fail to be a descent direction.

In the s. p. d. case, we can show that as long as the sequence of model Hessians remains “well behaved”,

the sequence of search directions satisfies the angle condition (5.8) and thus is admissible as well.

Lemma 5.5 (bounded condition numbers imply the angle condition
19
). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘)

the sequences of iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2.
Suppose that the search directions are obtained from (5.4), where 𝐻 (𝑘) ∈ R𝑛×𝑛 is a sequence of s. p. d.
model Hessians. Suppose, moreover, that the generalized condition numbers of 𝐻 (𝑘) w.r.t. 𝑀 satisfy

𝜅 (𝐻 (𝑘) ;𝑀) B 𝜆max(𝐻 (𝑘) ;𝑀)
𝜆min(𝐻 (𝑘) ;𝑀)

≤ 𝜅.

Then the sequence of search directions 𝑑 (𝑘) satisfies the angle condition (5.8) with

𝜂 =
2

√
𝜅

𝜅 + 1 ≥
1

√
𝜅
.

Proof. We perform a couple of equivalent reformulations of the claim to obtain

− ∇𝑓 (𝑥 (𝑘))ᵀ𝑑 (𝑘) ≥ 2

√
𝜅

𝜅 + 1 ∥∇𝑀 𝑓 (𝑥
(𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀

⇔ (𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘) ≥ 2

√
𝜅

𝜅 + 1 ∥𝑀
−1𝐻 (𝑘)𝑑 (𝑘) ∥𝑀 ∥𝑑 (𝑘) ∥𝑀 since 𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘))

⇔ ((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘))2 ≥ 4𝜅

(𝜅 + 1)2 ∥𝑀
−1𝐻 (𝑘)𝑑 (𝑘) ∥2𝑀 ∥𝑑 (𝑘) ∥2𝑀

⇔ ((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑀−1𝐻 (𝑘)𝑑 (𝑘)) ((𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘))
((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘))2

≤ (𝜅 + 1)
2

4𝜅
.

The statement in the previous line, however, is true due to the generalized Kantorovich inequality

(Corollary 2.2). □

We summarize our findings on search directions:

the model Hessians 𝐻 (𝑘) have bounded condition numbers

⇒ the angle condition (5.8) holds

⇒ the search directions are admissible (5.7).

19
In the literature, one often finds this result only in the case 𝑀 = Id, and with the non-optimal bound 𝜂 = 1

𝜅 ; see for

instance Ulbrich, Ulbrich, 2012, S.32 or Nocedal, Wright, 2006, eq.(3.19).

52 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Requirements on the Step Sizes

We now address the step sizes 𝛼 (𝑘) . The following example shows that the mere requirement

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘))

is not sufficient to obtain a reasonable convergence behavior.

Example 5.6 (too small step sizes
20
). Consider the objective 𝑓 : R→ R, 𝑓 (𝑥) = 𝑥2, initial guess 𝑥 (0) = 1,

search directions 𝑑 (𝑘) = −1 and the Euclidean inner product 𝑀 = 1. With step sizes 𝛼 (𝑘) =
(
1

2

)𝑘+2, we
obtain the sequences of iterates according to

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘) (−1) = 𝑥 (0) −
𝑘∑︁
𝑖=0

(
1

2

)𝑖+2
= 1

2
+

(
1

2

)𝑘+2
.

This implies 𝑥 (𝑘+1) < 𝑥 (𝑘) and 𝑓 (𝑥 (𝑘+1)) < 𝑓 (𝑥 (𝑘)). However, 𝑥 (𝑘) → 𝑥∗ = 1/2, which is not a stationary
point of 𝑓 .

The step sizes in the previous example are too small and thus they violate our second goal (item (2)

above) since they do not exploit the achievable descent sufficiently well. We therefore introduce the

following qualitative condition on the step sizes.

Definition 5.7 (admissible step sizes). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) the sequences of iterates and search
(descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝛼 (𝑘) of step sizes is
termed admissible in case

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) for all 𝑘 ∈ N0, (5.10a)

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
→ 0. (5.10b)

We can interpret (5.10b) as follows: when the progress in the objective values converges to zero, then

it is due to the normalized directional derivatives converging to zero and not due to the step sizes

becoming too small. In other words, admissible step sizes do make sufficient use of the descent available

in the direction 𝑑 (𝑘) .

Condition (5.10) is purely qualitative. By contrast, the condition that the step sizes be efficient, i. e.,
there exists 𝜃 > 0 such that

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) − 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀

)
2

(5.11)

for all 𝑘 ∈ N0 is a stronger, quantitative condition, which is moreover easy to verify.

20
from Alt, 2002, Beispiel 4.4.1

https://tinyurl.com/scoop-nlo 53

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 5.8 (efficiency implies admissibility). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. If the sequence is step sizes
𝛼 (𝑘) is efficient, then it is also admissible.

Proof. Suppose that 𝛼 (𝑘) is efficient, i. e.,

0 ≤ 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀

)
2

≤ 𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘))

Therefore (5.10a) is clear. To show (5.10b), suppose

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0.

Since 𝜃 is strictly positive, this implies

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
→ 0,

which confirms (5.10b). □

Using the assumptions of admissible search directions and admissible step sizes, we will obtain a

theorem (see Theorem 5.9 below) on the global convergence of Algorithm 5.2. However, in view of

the expected convergence result (5.5), we will have to work with accumulation points (limits of subse-

quences) of the iterates. This means that we should refine the notion of admissible search directions

(5.7), the notions of admissible step sizes (5.10) as well as efficient step sizes (5.11) to subsequences.

We denote such subsequences here with

(
𝑥 (𝑘)

)
𝑘∈𝐾 , where 𝐾 ⊆ N0 is an infinite subset of the index

set N0. (Quiz 5.2: How does this notation relate to the notation for subsequences

(
𝑥 (𝑘

(ℓ)))
introduced

in § 2.7?)

In detail, the refined conditions on subsequences read as follows:

admissible search directions:

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
𝑘∈𝐾−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 0, (5.7’)

angle condition:

−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀
≥ 𝜂 for all 𝑘 ∈ 𝐾 (5.8’)

admissible step sizes:

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) for all 𝑘 ∈ N0, (5.10a’)

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) 𝑘∈N0−−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
𝑘∈𝐾−−−→ 0, (5.10b’)

54 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

efficient step sizes:

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) − 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀

)
2

for all 𝑘 ∈ 𝐾. (5.11’)

The statements of Lemma 5.4, Lemma 5.5 and Lemma 5.8 continue to hold when restricted to subse-

quences.

We now show a global convergence theorem for the model Algorithm 5.2.

Theorem 5.9 (global convergence of model Algorithm 5.2). Suppose that Algorithm 5.2 generates an
infinite sequence of iterates 𝑥 (𝑘) , search directions 𝑑 (𝑘) ≠ 0 and step sizes 𝛼 (𝑘) . Suppose that 𝑥∗ is an
accumulation point of 𝑥 (𝑘) and that

(
𝑥 (𝑘)

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Finally, suppose that

the subsequences
(
𝑑 (𝑘)

)
𝑘∈𝐾 and

(
𝛼 (𝑘)

)
𝑘∈𝐾 of search directions and step sizes are both admissible. Then

𝑓 ′(𝑥∗) = 0.

Note: In other words, when a generic descent algorithm (Algorithm 5.2) produces admissible search

directions and admissible step sizes, then any accumulation point of the iterates is stationary.

Quiz 5.3: What goes wrong in Example 5.6?

Proof. Due to the continuity of 𝑓 , we have 𝑓 (𝑥 (𝑘)) 𝑘∈𝐾−−−→ 𝑓 (𝑥∗). Moreover, by admissibility of the step

sizes (5.10a’), the entire sequence 𝑓 (𝑥 (𝑘)) is monotone decreasing. Therefore, the entire sequence in

fact converges: 𝑓 (𝑥 (𝑘)) → 𝑓 (𝑥∗). Consequently, we also have

𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0.

The admissibility of step sizes along the subsequence, (5.10b’), implies

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥
𝑘∈𝐾−−−→ 0.

Since the search directions along the subsequence are in turn admissible, (5.7’), we can conclude

𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 0.

On the other hand, since 𝑓 is of class 𝐶1
, we also have

𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 𝑓 ′(𝑥∗).

This shows 𝑓 ′(𝑥∗) = 0. □

§ 5.2 Step Size Strategies

In this section we will see how efficient step sizes (5.11) or at least admissible step sizes (5.10) can be

found in general.

https://tinyurl.com/scoop-nlo 55

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Armijo Backtracking Line Search

The Armijo backtracking line search is the simplest step size strategy and it is sufficient in many

situations. Suppose that 𝑑 (𝑘) is a descent direction for 𝑓 at 𝑥 (𝑘) . In order to obtain sufficient decrease,

the Armijo condition requires that the step size 𝛼 satisfy

𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) (5.12)

holds. Here 𝜎 ∈ (0, 1) is the given Armijo parameter. Using the auxiliary function (line search
function)

𝜑 (𝛼) ≔ 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘))

to simplify notation, we can write the Armijo condition (5.12) equivalently in the form

𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0). (5.12)

Step sizes 𝛼 ≥ 0 which satify (5.12) are termed Armijo step sizes. Condition (5.12) requires that the

step size 𝛼 realizes at least the 𝜎-fraction of the first-order descent suggested by the tangent of 𝜑 at

𝛼 = 0.

Notice that due to the chain rule, 𝜑 inherits the 𝐶1
property of 𝑓 , and we have

𝜑 ′(𝛼) = 𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) (5.13a)

and, in particular, 𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) . (5.13b)

𝛼

𝜑 (𝛼)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

Figure 5.1: Illustration of step sizes 𝛼 ≥ 0 satisfying the Armijo condition (5.12) (blue). As an example,

the Armijo parameter is chosen as 𝜎 = 0.05.

We will now answer the question whether Armijo step sizes exist, and how to find them.

Lemma 5.10 (Existence of Armijo step sizes). Suppose that 𝑑 is a descent direction for 𝑓 at 𝑥 , and that
the Armijo parameter satisfies 𝜎 ∈ (0, 1). Then there exists 𝛼 > 0 such that (5.12) holds for all 𝛼 ∈ [0, 𝛼].

56 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Proof. 𝜑 ′ is continuous at 0, which implies that there exists 𝛼 > 0 such that

𝜑 ′(𝛼) < 𝜎 𝜑 ′(0) holds for all 𝛼 ∈ [0, 𝛼] .

From Taylor’s theorem 2.4 we obtain that there exists 𝜉 ∈ [0, 𝛼] such that

𝜑 (𝛼) = 𝜑 (0) + 𝛼 𝜑 ′(𝜉)
≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) .

Therefore, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼]. □

We have seen that the Armijo condition is always satisfied in an interval starting at 𝛼 = 0. However,

we need to select a step size which is not too small, as demonstrated by Example 5.6. This can be

achieved by a backtracking strategy: run through a sequence of trial step sizes from large to small

until the Armijo conditon (5.12) is satisfied for the first time.

Algorithm 5.11 (Armijo backtracking line search).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑
Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameter 𝛽 ∈ (0, 1)
Output: step size 𝛼 satisfying the Armijo condition (5.12)

1: Set ℓ B 0

2: while Armijo condition (5.12) does not hold for 𝛼 do
3: Set 𝛼 B 𝛽 𝛼 // new trial step size
4: Set ℓ B ℓ + 1
5: end while
6: return 𝛼

Remark 5.12 (on Algorithm 5.11).

(𝑖) In Algorithm 5.11, we did not number the trial step sizes 𝛼 (0) , 𝛼 (1) , . . . by an index in order to avoid
confusion with the step size 𝛼 (𝑘) which eventually gets used in the 𝑘-th iteration of the outer
algorithm (Algorithm 5.2).

(𝑖𝑖) Every trial step size that fails to satisfy the Armijo condition “costs” one additional evaluation of 𝜑 ,
i. e., one additional evaluation of 𝑓 .

(𝑖𝑖𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10
−2 or even 𝜎 = 10

−4. A typical value
for the backtracking parameter is 𝛽 = 1/2.

(𝑖𝑣) It follows from Lemma 5.10 that Algorithm 5.11 terminates after finitely many iterations with a
successful trial step size 𝛼 ≥ 𝛼 𝛽 . (Recall that 𝛼 is the upper bound of any interval [0, 𝛼] containing
only Armijo step sizes.)

https://tinyurl.com/scoop-nlo 57

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑣) In a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too
many unsuccessful trial steps.

Suitable values for the initial trial step size 𝛼 in Algorithm 5.11 depend on how the search directions

𝑑 (𝑘) are generated in the outer method. We will see more on that when we discuss concrete instances

of Algorithm 5.2. Since the backtracking strategy only shortens the initial trial step size, we need to

ensure that the initial trial step size is sufficiently large in order to obtain admissible step sizes that

exploit the achievable descent sufficiently well. This is what the following result is about.

Lemma 5.13 (Armijo backtracking line search produces admissible step sizes). Suppose that Algo-
rithm 5.2 generates an infinite sequence of iterates 𝑥 (𝑘) and search (descent) directions 𝑑 (𝑘) ≠ 0. Suppose
moreover that the step sizes 𝛼 (𝑘) are obtained by the Armijo backtracking line search (Algorithm 5.11)
with initial trial step size 𝛼 (𝑘,0) . Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Finally, suppose that𝜓 : [0,∞) → [0,∞) is any monotone increasing function and

that the initial trial step sizes satisfy

𝛼 (𝑘,0) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝜓
(−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)
for all 𝑘 ∈ 𝐾. (5.14)

Then the step sizes
(
𝛼 (𝑘)

)
𝑘∈𝐾 are admissible.

Proof. We need to show (5.10a’) and (5.10b’). The first condition is a direct consequence of the Armijo

condition holding at 𝛼 (𝑘) > 0

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘) 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)︸ ︷︷ ︸
<0

,

the fact that 𝑑 (𝑘) is a descent direction and that 𝜎 is positive. It remains to verify (5.10b’).

By assumption, the sequence

(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Therefore, it has a convergent subsequence with

index set 𝐾 ′. By continuity of 𝑓 ,
(
𝑓 (𝑥 (𝑘))

)
𝑘∈𝐾 converges. Due to the Armijo condition (5.12), the

sequence 𝑓 (𝑥 (𝑘)) is monotone decreasing, so that in fact the entire sequence 𝑓 (𝑥 (𝑘)) converges. From
there and the Armijo condition (5.12) we conclude

𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) ≤ 𝜎 𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0.

The left-hand side converges to 0, therefore we must have

𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) → 0. (∗)

In order to verify (5.10b’), we need to show

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
𝑘∈𝐾−−−→ 0.

58 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

In the remainder of the proof, we distinguish indices 𝑘 ∈ 𝐾 according to the following cases:

When 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 is “large”, then

𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀
is small.

When 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 is “small”, then

{
we use the assumption (5.14) in case 𝛼 (𝑘) = 𝛼 (𝑘,0) .

we use the Armijo condition (5.12) in case 𝛼 (𝑘) < 𝛼 (𝑘,0) .

By assumption, the sequence

(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded, hence the continuous function 𝑓 ′ is uniformly

continuous “near the

(
𝑥 (𝑘)

)
𝑘∈𝐾 ”. More precisely, suppose that 𝑅 > 0 is any fixed number, then 𝑓 ′ is

uniformly continuous on the compact set

𝐴𝑅 B cl

⋃
𝑘∈𝐾

𝐵𝑀𝑅 (𝑥
(𝑘)) .

(Quiz 5.4: Why is this set compact?) Now suppose that 𝜀 > 0 is given. Then there exists 𝛿 > 0 such

that

∥ 𝑓 ′(𝑦) − 𝑓 ′(𝑧)∥𝑀−1 ≤ (1 − 𝜎) 𝜀
holds for all 𝑦, 𝑧 ∈ 𝐴𝑅 such that ∥𝑦 − 𝑧∥𝑀 ≤ 𝛿 . Possibly by making 𝛿 smaller, we can assume 𝛿 ≤ 𝑅.
Thus, in particular, we obtain

𝑓 ′(𝑥 (𝑘) + 𝑒︸ ︷︷ ︸

∈𝐴𝑅

) − 𝑓 ′(𝑥 (𝑘)︸ ︷︷ ︸
∈𝐴𝑅

)

𝑀−1 ≤ (1 − 𝜎) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿. (∗∗)

We now set

𝛿 B min

{
𝛿 𝛽, 𝜓 (𝜀)

}
∈ (0, 𝛿) .

Due to the convergence in (∗), there exists an index 𝑘0 ∈ N0 such that

𝛼 (𝑘)
��𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) �� ≤ 𝜀 𝛿 holds for all 𝑘 ≥ 𝑘0. (∗∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. We are going to show that

0 ≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
≤ 𝜀

holds, which proves (5.10b’). We distinguish the following cases, as anticipated above:

Case 1: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝛿
In this case we immediately conclude

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
since 𝑑 (𝑘) is a descent direction

=
−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗∗) and the assumption in case 1

= 𝜀.

https://tinyurl.com/scoop-nlo 59

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Case 2: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿 and 𝛼 (𝑘) = 𝛼 (𝑘,0)

We obtain

𝜓

(−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)
≤ 𝛼𝑘,0 ∥𝑑 (𝑘) ∥𝑀 by assumption (5.14)

< 𝛿 by the assumption in case 2

≤ 𝜓 (𝜀) by the choice of 𝛿.

Since𝜓 is monotone increasing, we conclude

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
≤ 𝜀.

Case 3: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿 and 𝛼 (𝑘) < 𝛼 (𝑘,0)

The assumption 𝛼 (𝑘) < 𝛼 (𝑘,0) means that the initial trial step size (and possibly some of the subsequent

trial step sizes) did not satisfy the Armijo condition. Since 𝛼 (𝑘) was the first trial step size to satisfy

the Armijo condition (5.12), the previous trial step size, 𝛽−1𝛼 (𝑘) , violated it:

𝜎 𝛽−1𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘))𝑑 (𝑘) < 𝑓
(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘)𝑑 (𝑘)

)
− 𝑓 (𝑥 (𝑘)).

By Taylor’s theorem 2.4, there exists 𝜉 (𝑘) ∈ (0, 1) such that

𝜎 𝛽−1𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘))𝑑 (𝑘) < 𝛽−1𝛼 (𝑘) 𝑓 ′
(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)

)
𝑑 (𝑘)

and thus

𝜎 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 𝑓 ′
(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)

)
𝑑 (𝑘)

= 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) +
[
𝑓 ′

(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)

)
− 𝑓 ′(𝑥 (𝑘))

]
𝑑 (𝑘)

≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) +

𝑓 ′ (𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)︸ ︷︷ ︸

C𝑒 (𝑘)

)
− 𝑓 ′(𝑥 (𝑘))

𝑀−1 ∥𝑑

(𝑘) ∥𝑀 .

The vector 𝑒 (𝑘) satisfies

∥𝑒 (𝑘) ∥𝑀 = 𝛽−1𝛼 (𝑘)𝜉 (𝑘) ∥𝑑 (𝑘) ∥𝑀
< 𝛽−1𝛿 by the assumption in case 3 and since 𝜉 (𝑘) ∈ (0, 1)
≤ 𝛿 by the choice of 𝛿.

We may thus apply estimate (∗∗) to the inequality above to obtain

𝜎 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) + (1 − 𝜎) 𝜀 ∥𝑑 (𝑘) ∥𝑀 .

Sorting terms and dividing by ∥𝑑 (𝑘) ∥𝑀 finally yields

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
≤ 𝜀.

□

60 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Remark 5.14 (Armijo backtracking line search produces efficient step sizes). Whenwe choose𝜓 (𝑧) = 𝑐 𝑧
with some 𝑐 > 0, i. e., when we use initial trial step sizes satisfying

𝛼𝑘,0 ∥𝑑 (𝑘) ∥𝑀 ≥ 𝑐
−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
, (5.15)

and if 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0))}, then one
can show that Algorithm 5.11 produces not only admissible, but efficient step sizes.

To conclude the presentation of Armijo backtracking strategies, we consider a modification of Algo-

rithm 5.11 which often produces trial step sizes more effectively than simple backtracking 𝛼 { 𝛽 𝛼 in

case the Armijo condition fails on the initial trial step size.

The modification is based on the fact that we have available the data of the line search function 𝜑

𝜑 (0), 𝜑 ′(0) < 0 and 𝜑 (𝛼)

for the current trial step size 𝛼 . Using this data, we can fit a quadratic polynomial

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2.

The conditions
21 𝑝 (0) = 𝜑 (0), 𝑝′(0) = 𝜑 ′(0) and 𝑝 (𝛼) = 𝜑 (𝛼) uniquely define the coefficients

𝑎 = 𝜑 (0), 𝑏 = 𝜑 ′(0), 𝑐 =
1

𝛼2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

)
. (5.16)

Naturally, this quadratic model of 𝜑 will be used only when the Armijo condition (5.12) failed at the

trial step size 𝛼 , i. e., in case

𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼 > 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼 > 0

holds, which implies 𝑐 > 0. This in turn means that the unique global minimizer 𝛼∗ = − 𝑏
2𝑐

of 𝑝

satisfies

𝛼∗ =
−𝜑 ′(0) 𝛼2

2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

) > 0.

We then choose 𝛼∗ as the next trial step size 𝛼+, but in order to avoid drastic changes or even an

increase from 𝛼 to 𝛼+, we clip 𝛼∗ to the interval [𝛽 𝛼, 𝛽 𝛼] according to

𝛼+ B min

{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼

}
=


𝛽 𝛼, if 𝛼∗ < 𝛽 𝛼,

𝛼∗, if 𝛽 𝛼 ≤ 𝛼∗ ≤ 𝛽 𝛼,
𝛽 𝛼, if 𝛼∗ > 𝛽 𝛼,

where 0 < 𝛽 < 𝛽 < 1 are the clipping parameters.
22

This modified Armijo backtracking line search

maintains the essential properties of the simple Armijo backtracking line search. In particular, the

admissibility (and potentially efficiency) of the accepted step sizes (see Lemma 5.13 and Remark 5.14)

continue to hold.

For completeness, we present the modified Armijo backtracking line search procedure in Algo-

rithm 5.15.

21
Fitting a polynomial using function values and derivatives is known as Hermite interpolation. Using function values

only is known as Lagrange interpolation.
22
Using 𝛽 = 𝛽 = 𝛽 we get back our previous simple backtracking strategy where 𝛼+ = 𝛽 𝛼 .

https://tinyurl.com/scoop-nlo 61

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Algorithm 5.15 (modified Armijo backtracking line search with interpolation).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑
Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameters 0 < 𝛽 < 𝛽 < 1

Output: step size 𝛼 satisfying the Armijo condition (5.12)

1: Set ℓ B 0

2: while Armijo condition (5.12) does not hold for 𝛼 do

3: Set 𝛼∗ B
−𝜑 ′(0) 𝛼2

2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

) // minimizer of quadratic polynomial

4: Set 𝛼 B min

{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼

}
// clip it and use as new trial step size

5: Setze ℓ B ℓ + 1
6: end while
7: return 𝛼

Wolfe-Powell Line Search

Recall from Lemma 5.10 that the Armijo condition

𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or 𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) (5.12)

always holds in some interval [0, 𝛼]. Therefore, we combined the Armijo condition with backtracking,

where we generate trial step sizes from large to small, in order to avoid overly small step sizes.

Alternatively, we could require, in addition to (5.12), the curvature condition

𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) ≥ 𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or 𝜑 ′(𝛼) ≥ 𝜏 𝜑 ′(0) (5.17)

or even the strong curvature condition

|𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) | ≤ −𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or |𝜑 ′(𝛼) | ≤ −𝜏 𝜑 ′(0) (5.18)

to hold, where 𝜏 ∈ (𝜎, 1) is the curvature parameter. The curvature condition (5.17) demands that

the derivative of 𝜑 at 𝛼 is not too negative, namely that it is larger (has less descent) than at 𝛼 = 0.

However, it would be fine for 𝜑 to increase near 𝛼 ; see Figure 5.2. This curvature condition already

avoids too small step sizes 𝛼 near 0.

The strong curvature condition (5.18) demands that, in addition, the derivative of 𝜑 at 𝛼 it not too

positive either. The condition can be interpreted as the requirement that 𝛼 be an approximately

stationary point of 𝜑 . Note: When 𝛼 is a local minimizer of 𝜑 , then (5.18) holds with 𝜏 = 0.

The Armijo condition (5.12) and the curvature condition (5.17) together are referred to as theWolfe-
Powell conditions. The Armijo condition (5.12) and the strong curvature condition (5.18) together are

referred to as the strong Wolfe-Powell conditions. Consequently, step sizes 𝛼 ≥ 0 which satisfy the

above conditions are referred to asWolfe-Powell step sizes and strong Wolfe-Powell step sizes,
respectively.

62 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

𝛼

𝜑 (𝛼)

Figure 5.2: Illustration of step sizes 𝛼 ≥ 0 satisfying the curvature condition (5.17) (red). As an example,

the curvature parameter is chosen as 𝜏 = 0.1.

𝛼

𝜑 (𝛼)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

Figure 5.3: Illustration of step sizes 𝛼 ≥ 0 satisfying both the Armijo condition (5.12) (blue) and the

curvature condition (5.17) (red). As an example, the Armijo parameter is chosen as 𝜎 = 0.05

and the curvature parameter is chosen as 𝜏 = 0.1.

A simple example such as 𝜑 (𝛼) = −𝛼 shows that the curvature condition may not be satisfiable without

further assumptions on 𝑓 . The following result gives a sufficient condition for strong Wolfe-Powell

step sizes to exist.

Lemma 5.16 (Existence of (strong) Wolfe-Powell step sizes). Suppose that 𝑑 is a descent direction for
𝑓 at 𝑥 and that the Armijo and curvature parameters satisfy 0 < 𝜎 < 𝜏 < 1. Suppose, moreover, that 𝑓
is bounded below on the ray {𝑥 + 𝛼 𝑑 | 𝛼 ≥ 0}. Then there exists a step size 𝛼2 > 0 such that the strong
Wolfe-Powell conditions (5.12) and (5.18) (and thus also the regular Wolfe-Powell conditions (5.12) and
(5.17)) hold in a neighborhood of 𝛼2.

Proof. We abbreviate as usual 𝜑 (𝛼) B 𝑓 (𝑥 + 𝛼 𝑑). Since by assumption, 𝜑 is bounded below on R≥0, 𝜑

https://tinyurl.com/scoop-nlo 63

https://tinyurl.com/scoop-nlo

R. Herzog cbn

intersects the Armijo line

𝛼 ↦→ 𝜑 (0) + 𝜎 𝜑 ′(0)︸ ︷︷ ︸
<0

𝛼,

which is unbounded below, in at least one positive point. Suppose that 𝛼1 is the smallest positive point

of intersection (Quiz 5.5: Why does 𝛼1 exist?). Then we have

𝜑 (𝛼1) = 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼1.

In view of 𝜑 ′(0) < 0, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼1], i. e., the Armijo line lies below

𝜑 on this interval. From the mean value theorem 2.4, we infer the existence of 𝛼2 ∈ (0, 𝛼1) such that

𝜑 ′(𝛼2) =
𝜑 (𝛼1) − 𝜑 (0)

𝛼1
= 𝜎 𝜑 ′(0) .

And thus we obtain the strong curvature condition (5.18) at 𝛼2:

|𝜑 ′(𝛼2) | = −𝜎 𝜑 ′(0) < −𝜏 𝜑 ′(0).

Due to the continuity of 𝜑 ′, the strong curvature condition (5.18) and thus also the regular curvature

condition (5.17) continue to hold for all 𝛼 in a neighborhood of 𝛼2. □

We now address an algorithm to find a Wolfe-Powell step size. To simplify notation, we introduce the

auxiliary function

𝜓 (𝛼) B 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼

so that we can write

the Armijo condition (5.12) ⇐⇒ 𝜓 (𝛼) ≤ 0, (5.12’)

the curvature condition (5.17) ⇐⇒ −(𝜏 − 𝜎) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼), (5.17’)

the strong curvature condition (5.18) ⇐⇒ −(𝜏 − 𝜎︸ ︷︷ ︸
>0

) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼) ≤ (𝜏 + 𝜎) |𝜑 ′(0) |. (5.18’)

We restrict the discussion to the regular Wolfe-Powell condition, i. e., (5.12) and (5.17). See for instance

Geiger, Kanzow, 1999, Kapitel 6.3 for the strong Wolfe-Powell condition.

Lemma 5.17 (inclusion of Wolfe-Powell step sizes, see Geiger, Kanzow, 1999, Lemma 6.1). Suppose
that 0 ≤ 𝑎 < 𝑏 are chosen such the conditions

𝜓 (𝑎) ≤ 0 and 𝜓 ′(𝑎) < 0 (5.19a)

as well as 𝜓 (𝑏) ≥ 0 (5.19b)

hold; see Figure 5.4. Then there exists 𝛼∗ ∈ (𝑎, 𝑏) such that

𝜓 (𝛼∗) < 0 and 𝜓 ′(𝛼∗) = 0

holds. In particular, the Wolfe-Powell conditions (5.12’) and (5.17’) hold in a neighborhood of 𝛼∗.

64 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Proof. Let us denote by 𝛼∗ a global minimizer of

Minimize𝜓 (𝛼) on the compact interval [𝑎, 𝑏] .

The assumptions on 𝑎 and 𝑏 imply that 𝛼∗ belongs to the open interval (𝑎, 𝑏). Consequently, 𝛼∗ is
also a local minimizer of the unconstrained problem “Minimize𝜓 (𝛼) where 𝛼 ∈ R”, and thus we have

𝜓 ′(𝛼∗) = 0. From𝜓 (𝑎) ≤ 0 and𝜓 ′(𝑎) < 0 we infer𝜓 (𝛼∗) < 0. Since both (5.12’) and (5.17’) hold with

strict inequalities at 𝛼∗, continuity implies that they hold in a neighborhood of 𝛼∗. □

𝛼

𝜓 (𝛼)

𝑎

𝑏

𝛼∗

Figure 5.4: Illustration of the condition (5.19) and the statement of Lemma 5.17.

Note: The condition (5.19a) is readily seen to hold at 𝑎 = 0. This motivates the strategy to first find a

right boundary 𝑏 so that (5.19b) holds as well, and then to approximate 𝛼∗ by nesting intervals.

Algorithm 5.18 (Wolfe-Powell line search).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑 and 𝜑 ′

Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo and curvature parameters 0 < 𝜎 < 𝜏 < 1

Input: expansion parameter 𝛾 > 1

Input: nesting parameters 𝛾,𝛾 ∈ (0, 1/2]
Output: step size 𝛼 satisfying the Wolfe-Powell conditions (5.12) and (5.17)

1: Set 𝑎 B 0 and 𝑏 B 𝛼

2: Set ℓ B 0

3: while 𝜑 (𝑏) < 𝜑 (0) + 𝜎 𝜑 ′(0) 𝑏 and 𝜑 ′(𝑏) < 𝜏 𝜑 ′(0) do // phase 1 repeatedly expands [0, 𝑏] until
(5.19) holds

4: Set 𝑏 B 𝛾 𝑏 // expand the right boundary 𝑏
5: Set ℓ B ℓ + 1
6: end while // now we have (5.19)
7: Set 𝛼 B 𝑏

8: while Armijo condition (5.12) or curvature condition (5.17) is violated at 𝛼 do // phase 2 repeatedly
shrinks [𝑎, 𝑏] until (5.12) and (5.17) hold

9: Choose 𝛼 ∈ [𝑎 + 𝛾 (𝑏 − 𝑎), 𝑏 − 𝛾 (𝑏 − 𝑎)] // for instance, choose the midpoint

https://tinyurl.com/scoop-nlo 65

https://tinyurl.com/scoop-nlo

R. Herzog cbn

10: if 𝜑 (𝛼) ≥ 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼 then // Armijo condition is violated at 𝛼
11: Set 𝑏 B 𝛼 // reduce the right boundary 𝑏
12: else
13: Set 𝑎 B 𝛼 // increase the left boundary 𝑎
14: end if
15: Set ℓ B ℓ + 1
16: end while
17: return 𝛼

Remark 5.19 (on Algorithm 5.18, compare Remark 5.12).

(𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10
−2 or even 𝜎 = 10

−4. Depending
on the characteristics of the outer method (which determines the search directions), the curvature
parameter 𝜏 > 𝜎 should be chosen “small” as well, e. g., 𝜏 = 0.1, or otherwise “large”, e. g., 𝜏 = 0.9.

(𝑖𝑖) Each iteration of phase 1 “costs” one additional evaluation of 𝜑 and 𝜑 ′, i. e., one additional evaluation
of 𝑓 and 𝑓 ′, or rather the directional derivative of 𝑓 in the direction of the current search direction;
compare (5.13). Each iteration of phase 2 “costs” one additional evaluation of 𝜑 .

(𝑖𝑖𝑖) Using Lemma 5.17, it is not difficult to see that Algorithm 5.18 terminates after finitely many steps
under the conditions of Lemma 5.16:

• The while loop beginning at Line 3 terminates, since for 𝑏 sufficiently large, the Armijo
condition (5.12) is violated. For such 𝑏, we have𝜓 (𝑏) > 0, i. e., (5.19b) holds.

• At the first iteration of the while loop beginning at Line 8, the conditions (5.19) of Lemma 5.17
are satisfied. Consequently, they continue to hold also in all subsequent iterations.

• The length of the intervals [𝑎, 𝑏] in phase 2 goes to zero if infinitely many iterations of the
while loop beginning at Line 8 were performed. However, as shown in Lemma 5.17, there
is an open set of points which satisfy both the Armijo condition (5.12) and the curvature
condition (5.17) inside any of the intervals [𝑎, 𝑏] considered in phase 2. Therefore, phase 2
must terminate.

(𝑖𝑣) The step size accepted by Algorithm 5.18 may be larger or smaller than the initial trial step size
provided by the user.

(𝑣) As was already noted for the Armijo backtracking line search (Algorithm 5.11) in Remark 5.12, in
a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too
many unsuccessful trial steps.

(𝑣𝑖) An algorithm for the strong Wolfe-Powell line search can be found in Geiger, Kanzow, 1999, Kapi-
tel 6.3.

The admissibility of step sizes generated by the Wolfe-Powell line search algorithm is shown in the

66 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

following result. Clearly, this result also applies to step sizes satisfying the strong Wolfe-Powell

conditions.

Lemma 5.20 (Wolfe-Powell line search produces admissible step sizes). Suppose that Algorithm 5.2
generates an infinite sequence of iterates 𝑥 (𝑘) and search (descent) directions 𝑑 (𝑘) ≠ 0. Suppose moreover
that the step sizes 𝛼 (𝑘) are chosen so that they satisfy the Wolfe-Powell conditions (5.12) and (5.17) (for
instance by Algorithm 5.18).23 Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Then the step sizes

(
𝛼 (𝑘)

)
𝑘∈𝐾 are admissible.

Proof. As in the proof of Lemma 5.13 we obtain the result

−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) → 0. (∗)

It remains to show

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥
𝑘∈𝐾−−−→ 0.

To this end, let 𝜀 > 0.

Just like in the proof of Lemma 5.13, we can argue that the boundedness of

(
𝑥 (𝑘)

)
𝑘∈𝐾 entails that the

continuous function 𝑓 ′ is uniformly continuous “near the

(
𝑥 (𝑘)

)
𝑘∈𝐾 ”. More precisely, there exists

𝛿 > 0 such that

𝑓 ′(𝑥 (𝑘) + 𝑒) − 𝑓 ′(𝑥 (𝑘))

𝑀−1 ≤ (1 − 𝜏) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿.

Because of (∗), there exists an index 𝑘0 ∈ N such that

𝛼 (𝑘) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ 𝜀 𝛿 for all 𝑘 ≥ 𝑘0. (∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. Similarly as in the proof of Lemma 5.13, we consider the

following cases:

Case 1: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝛿
Precisely as in the proof of Lemma 5.13, we obtain

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
since 𝑑 (𝑘) is a descent direction

=
−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗) and the assumption in case 1

= 𝜀.

23
Notice that, in contrast to condition (5.14) in Lemma 5.13, there is no lower bound on the initial trial step size necessary to

be observed.

https://tinyurl.com/scoop-nlo 67

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Case 2: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿

In this we argue with the satisfaction of the curvature conditon (5.17) for 𝛼 (𝑘) :

𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ≤ 𝑓 ′(𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) .

The addition of |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | = −𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) on both sides yields

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ 𝑓 ′(𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) − 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

≤
��𝑓 ′ (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) − 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ��
≤

𝑓 ′ (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 ′(𝑥 (𝑘))

𝑀−1 ∥𝑑

(𝑘) ∥𝑀 .

Invoking now the uniform continuity, we obtain

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ (1 − 𝜏) 𝜀 ∥𝑑 (𝑘) ∥𝑀 ,

and hence

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥𝑀
≤ 𝜀.

□

Analogously as with the Armijo backtracking line search (Remark 5.14), one can also show the efficiency

of step sizes when 𝑓 ′ is Lipschitz continuous on the sublevel set M𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤
𝑓 (𝑥 (0))}.

In concluding, we also remark that Line 9 in phase 2 of Algorithm 5.18 leaves some freedom in the

choice of the next trial step size 𝛼 . The available data 𝜑 (𝑎), 𝜑 ′(𝑎), 𝜑 (𝑏) and 𝜑 ′(𝑏) lends itself to a cubic
Hermite interpolation, using the model

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2 + 𝑑 𝛼3.

Provided that a unique local minimizuer 𝛼∗ of 𝑝 exists, we can calculate it explicitly and subsequently

clip it to the interval [𝑎, 𝑏]:
𝛼 B max{𝑎,min{𝑏, 𝛼∗}}.

One needs to pay attention to the fact that not all of the data 𝜑 ′(𝑎) and 𝜑 ′(𝑏) is necessarily available

in the current iteration of Algorithm 5.18. In this case one may proceed with a quadratic polynomial as

in the modified Armijo backtracking line search method.

Remark 5.21 (scaling invariance of the Armijo and curvature conditions). The Armijo and curvature
conditions (5.12), (5.17) and (5.18) are invariant w.r.t. affine scaling in the domain and codomain spaces.
Suppose that we consider, besides the objective 𝑓 , another objective 𝑔 related via

𝑓 (𝑥) { 𝑔(𝑥) B 𝛾 𝑓 (𝐴𝑥 + 𝑏) + 𝛿,

where 𝐴 ∈ R𝑛×𝑛 is non-singular, 𝑏 ∈ R𝑛 , 𝛾 > 0 and 𝛿 ∈ R.

Then the following holds: a step size 𝛼 that satisfies any of the conditions (5.12), (5.17) or (5.18) for 𝑔 at 𝑥
with search direction 𝑑 , satisfies the same conditions for 𝑓 at 𝐴𝑥 + 𝑏 with the search direction 𝐴𝑑 . Since
the scaling of an optimization problem is often arbitrary, this is a desirable property.

68 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

§ 5.3 Gradient Descent Method

In the remainder of § 5 we consider different concrete realizations of the generic descent method

Algorithm 5.2. The methods differ w.r.t. the way the search directions 𝑑 (𝑘) are generated and w.r.t.

the choice of the line search method (Armijo or Wolfe-Powell) to determine the step sizes 𝛼 (𝑘) . As
was already mentioned, the methods discussed here obtain the search drection at an iterate 𝑥 (𝑘) by
minimizing a quadratic model of the objective

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘)𝑑. (5.2)

When the model Hessian 𝐻 (𝑘) is s. p. d., this is equivalent to the solution of the linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.4)

The gradient descent method (also known as steepest descent method) for our generic uncon-
strained linear problem

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 (UP)

generates its search directions in the same way we already know from § 4.2, when 𝑓 was a quadratic

polynomial. That is, we use

𝑀 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) or 𝑑 (𝑘) = −𝑀−1∇𝑓 (𝑥 (𝑘)) = −∇𝑀 𝑓 (𝑥 (𝑘)) . (5.20)

This corresponds to using a constant model Hessian 𝐻 (𝑘) ≡ 𝑀 in the model (5.2):

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1

2

𝑑ᵀ𝑀 𝑑.

The choice of the inner product 𝑀 is due to the user. As was already mentioned in Remark 4.7,

one refers to the case 𝑀 = Id as the classical gradient descent method without preconditioning.

Otherwise one speaks of a preconditioned gradient descent method with preconditioner𝑀 .

The particular choice of 𝑑 (𝑘) in the gradient descent method clearly implies the angle condition (5.8)

with the maximal possible value, 𝜂 = 1. In particular, the search direction 𝑑 (𝑘) is a descent direction
for 𝑓 at 𝑥 (𝑘) , as long as 𝑓 ′(𝑥 (𝑘)) ≠ 0 holds.

A simple strategy is sufficient to determine admissible step sizes (5.10). One typically employs the

Armijo backtracking line search (Algorithm 5.11) or the version with interpolation (Algorithm 5.15).

The efficiency condition (5.15) requires that the initial trial step size satisfy

𝛼 (𝑘,0) ≥ 𝑐 −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)

∥𝑑 (𝑘) ∥2
𝑀

= 𝑐
−
(
∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘)

)
𝑀

∥𝑑 (𝑘) ∥2
𝑀

= 𝑐
∥𝑑 (𝑘) ∥2

𝑀

∥𝑑 (𝑘) ∥2
𝑀

since 𝑑 (𝑘) = −∇𝑀 𝑓 (𝑥 (𝑘))

= 𝑐

https://tinyurl.com/scoop-nlo 69

https://tinyurl.com/scoop-nlo

R. Herzog cbn

with some constant 𝑐 > 0. This simply suggests to impose a lower bound on the initial trial step sizes

in gradient descent methods. We will re-label 𝑐 as 𝛼 in Algorithm 5.22 below.

In addition to observing this bound, it is useful to construct initial trial step sizes using information

from past iterations. Assuming that the descent achievable in the current step is equal (to first order)

to the descent in the previous step (when the accepted step size was 𝛼 (𝑘−1)), we obtain the following

proposal for an initial trial step size 𝛼 (𝑘,0) at iteration 𝑘 ≥ 1:

𝛼 (𝑘,0) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = 𝛼 (𝑘−1) 𝑓 ′(𝑥 (𝑘−1)) 𝑑 (𝑘−1)

⇒ 𝛼 (𝑘,0) = 𝛼 (𝑘−1)
𝑓 ′(𝑥 (𝑘−1)) 𝑑 (𝑘−1)

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
.

Plugging in the descent directions used in the gradient descent method, this becomes

𝛼 (𝑘,0) = 𝛼 (𝑘−1)
∥∇𝑀 𝑓 (𝑥 (𝑘−1))∥2𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘))∥2𝑀

= 𝛼 (𝑘−1)
∥𝑑 (𝑘−1) ∥2

𝑀

∥𝑑 (𝑘) ∥2
𝑀

.

Alternatively, we could use the actual descent achieved in the previous step instead of its linearization,

which would result in

𝛼 (𝑘,0) =
𝑓 (𝑥 (𝑘−1)) − 𝑓 (𝑥 (𝑘))
∥∇𝑀 𝑓 (𝑥 (𝑘))∥2𝑀

=
𝑓 (𝑥 (𝑘−1)) − 𝑓 (𝑥 (𝑘))

∥𝑑 (𝑘) ∥2
𝑀

.

We state the full gradient descent method in Algorithm 5.22, using the above considerations for the

initial trial step size. As was the case for our methods in § 4 addressing the minimization of quadratic

polynomials, we refer to the value of the derivative of 𝑓 at an iterate 𝑥 (𝑘) as the residual 𝑟 (𝑘) .

The global convergence of Algorithm 5.22, in the sense that every accumulation point of the sequence

of iterates 𝑥 (𝑘) is a stationary point, follows directly from the global convergence theorem 5.9.

Algorithm 5.22 (Gradient descent method for (UP) w.r.t. the𝑀-inner product and Armijo backtracking

line search).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: Armijo parameter 𝜎 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Input: lower bound 𝛼 > 0 for the initial trial step sizes
Output: approximate stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0)) // evaluate the initial residual
4: Set 𝑑 (0) B −𝑀−1𝑟 (0)
5: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0) ∥2

𝑀

6: while stopping criterion not met do
7: if 𝑘 = 0 then

70 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

8: Set 𝛼 (𝑘,0) B 𝛼 // no information from previous iteration available
9: else
10: Set 𝛼 (𝑘,0) B max

{
𝛼,

𝑓 (𝑘)−𝑓 (𝑘−1)
𝛿 (𝑘)

}
11: end if
12: Determine a step size 𝛼 (𝑘) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11

or Algorithm 5.15), applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)), with initial trial step size 𝛼 (𝑘,0) , Armijo
parameter 𝜎 and backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘) and 𝜑 ′(0) = −𝛿 (𝑘) are already known

13: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)
14: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1)) // can be returned by the Armijo backtracking line search routine
15: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
16: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1)
17: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1) ∥2

𝑀

18: Set 𝑘 B 𝑘 + 1
19: end while
20: return 𝑥 (𝑘)

As a stopping criterion, we can choose again any of the conditions from (4.14), i. e., stop on the relative

or absolute magnitude of the derivative or gradient

∥𝑟 (𝑘) ∥𝑀−1 = ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 = ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 = ∥𝑑 (𝑘) ∥𝑀 = (𝛿 (𝑘))1/2.

These quantities are already available in the algorithm. A limited interpretation in the sense of

Lemma 4.11 is also possible. In case the sequence 𝑥 (𝑘) converges to a local minimizer that satisfies the

second-order sufficient optimality conditions (Theorem 3.3), then we have: for all 𝜀 > 0, there exists

𝛿 > 0 such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝛿 and ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ≤ 𝜀abs ⇒ ∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤
(
1

𝛼
+ 𝜀︸︷︷︸
≈1/𝛼

)
𝜀abs,

where 𝛼 = 𝜆min(𝑓 ′′(𝑥∗);𝑀) is the smallest eigenvalue of the Hessian at the solution w.r.t. 𝑀 . In

other words, when we are sufficiently close to a local minimizer satisfying the second-order sufficient

optimality conditions, then the norm of the derivative (or the gradient) is — up to the factor 1/𝛼 — a

useful measure of the distance to the solution.

Other often used stopping criteria are

∥𝑥 (𝑘) − 𝑥 (𝑘−1) ∥𝑀 ≤ 𝜀𝑥
abs
+ 𝜀𝑥

rel
∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 ,

|𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘−1)) | ≤ 𝜀 𝑓
abs
+ 𝜀 𝑓

rel
|𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (0)) |.

These are triggered by slow progress in the iterates or the objective values, respectively. One typically

sets 𝜀
𝑓

rel
= (𝜀𝑥

rel
)2.

It is remarkable that it is possible to monitor the quantities ∥𝑥 (𝑘) − 𝑥 (𝑘−1) ∥𝑀 and ∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 ,
although the matrix 𝑀 (or matrix-vector products with 𝑀) may not be available. Matrix-vector

products with 𝑀−1 are sufficient. The following quantities are useful for this purpose and can be

https://tinyurl.com/scoop-nlo 71

https://tinyurl.com/scoop-nlo

R. Herzog cbn

recursively updated, compare (4.33):

𝜔 (𝑘) B ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 (5.21a)

𝜉 (𝑘) B (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) = −(𝑥 (𝑘) − 𝑥 (0))ᵀ𝑟 (𝑘) (5.21b)

𝛿 (𝑘) B ∥𝑑 (𝑘) ∥2𝑀 (5.21c)

The details are left as an exercise.

End of Week 4

72 https://tinyurl.com/scoop-nlo 2023-05-07

https://tinyurl.com/scoop-nlo

Chapter 2 Theory for Constrained Optimization
Problems

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Chapter 3 Numerical Techniques for Constrained
Optimization Problems

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Chapter 4 Differentiation Techniques

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Bibliography

Akaike, H. (1959). “On a successive transformation of probability distribution and its application to

the analysis of the optimum gradient method”. Annals of the Institute of Statistical Mathematics 11,
pp. 1–16. doi: 10.1007/bf01831719.

Alpargu, G. (1996). “The Kantorovich Inequality, with Some Extensions and with Some Statistical

Applications”. MA thesis. Department of Mathematics and Statistics, McGill University, Montreal,

Canada.

Alt, W. (2002). Nichtlineare Optimierung. Vieweg Studium: Aufbaukurs Mathematik. Eine Einführung

in Theorie, Verfahren und Anwendungen. [An introduction to theory, procedures and applications].

Friedrich Vieweg & Sohn, Braunschweig. doi: 10.1007/978-3-322-84904-5.

Anderson, T. W. (1971). The Statistical Analysis of Time Series. John Wiley & Sons, Inc., New York-

London-Sydney. doi: 10.1002/9781118186428.

Barzilai, J.; J. M. Borwein (1988). “Two-point step size gradient methods”. IMA Journal of Numerical
Analysis 8.1, pp. 141–148. doi: 10.1093/imanum/8.1.141.

Cartan, H. (1967). Calcul Différentiel. Paris: Hermann.

Cauchy, A.-L. (1847). “Méthode générale pour la résolution des systemes d’équations simultanées”.

Comptes Rendus de l’Académie des Sciences Paris 25, pp. 536–538.
De Asmundis, R.; D. di Serafino; F. Riccio; G. Toraldo (2013). “On spectral properties of steepest descent

methods”. IMA Journal of Numerical Analysis 33.4, pp. 1416–1435. doi: 10.1093/imanum/drs056.
De Asmundis, R.; D. di Serafino; W. W. Hager; G. Toraldo; H. Zhang (2014). “An efficient gradient

method using the Yuan steplength”. Computational Optimization and Applications 59.3, pp. 541–563.
doi: 10.1007/s10589-014-9669-5.

Elman, H. C.; D. J. Silvester; A. J. Wathen (2014). Finite Elements and Fast Iterative Solvers: with Applica-
tions in Incompressible Fluid Dynamics. 2nd ed. Numerical Mathematics and Scientific Computation.

Oxford University Press. doi: 10.1093/acprof:oso/9780199678792.001.0001.

Forsythe, G. E. (1968). “On the asymptotic directions of the 𝑠-dimensional optimum gradient method”.

Numerische Mathematik 11, pp. 57–76. doi: 10.1007/BF02165472.

Geiger, C.; C. Kanzow (1999). Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben.
New York: Springer. doi: 10.1007/978-3-642-58582-1.

Gonzaga, C. C. (2016). “On the worst case performance of the steepest descent algorithm for quadratic

functions”.Mathematical Programming Series A 160, pp. 307–320. doi: 10.1007/s10107-016-0984-8.

Gonzaga, C. C.; R. M. Schneider (2015). “On the steepest descent algorithm for quadratic functions”.

Computational Optimization and Applications 63.2, pp. 523–542. doi: 10.1007/s10589-015-9775-z.
Herzog, R. (2022). Grundlagen der Optimierung. Lecture notes. url: https://tinyurl.com/scoop-gdo.
Hestenes, M. R.; E. Stiefel (1952). “Methods of conjugate gradients for solving linear systems”. Journal
of Research of the National Bureau of Standards 49, 409–436 (1953). doi: 10.6028/jres.049.044.

Heuser, H. (2002). Lehrbuch der Analysis. Teil 2. 12th ed. Stuttgart: B.G.Teubner. doi: 10.1007/978-3-

322-96826-5.

https://tinyurl.com/scoop-nlo

https://doi.org/10.1007/bf01831719
https://doi.org/10.1007/978-3-322-84904-5
https://doi.org/10.1002/9781118186428
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/drs056
https://doi.org/10.1007/s10589-014-9669-5
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1007/BF02165472
https://doi.org/10.1007/978-3-642-58582-1
https://doi.org/10.1007/s10107-016-0984-8
https://doi.org/10.1007/s10589-015-9775-z
https://tinyurl.com/scoop-gdo
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1007/978-3-322-96826-5
https://doi.org/10.1007/978-3-322-96826-5
https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Nocedal, J.; A. Sartenaer; C. Zhu (2002). “On the behavior of the gradient norm in the steepest descent

method”. Computational Optimization and Applications. An International Journal 22.1, pp. 5–35. doi:
10.1023/A:1014897230089.

Nocedal, J.; S. J. Wright (2006). Numerical Optimization. 2nd ed. New York: Springer. doi: 10.1007/

978-0-387-40065-5.

Ulbrich, M.; S. Ulbrich (2012). Nichtlineare Optimierung. New York: Springer. doi: 10.1007/978-3-

0346-0654-7.

https://tinyurl.com/scoop-nlo 77

https://doi.org/10.1023/A:1014897230089
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-3-0346-0654-7
https://doi.org/10.1007/978-3-0346-0654-7
https://tinyurl.com/scoop-nlo

	Introduction
	Elementary Notions
	Notation and Background Material
	Vector Norms
	Matrix Norms
	Eigenvalues and Eigenvectors
	Kantorovich Inequality
	Functions and Derivatives
	Taylor's Theorem
	Convergence Rates
	Convexity
	Miscellanea

	Numerical Techniques for Unconstrained Optimization Problems
	Optimality Conditions
	Minimization of Quadratic Functions
	Direction of Steepest Descent
	Gradient Descent Method with Cauchy Step Sizes
	Gradient Descent Method with Constant Step Sizes
	Gradient Descent Method with Other Step Size Rules
	Gradient Descent Method as Discretized Gradient Flow
	Conjugate Gradient Method

	Line Search Methods for Nonlinear Unconstrained Problems
	A Generic Descent Method
	Step Size Strategies
	Gradient Descent Method

	Theory for Constrained Optimization Problems
	Numerical Techniques for Constrained Optimization Problems
	Differentiation Techniques

