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Chapter 0 Introduction

§ 1 Elementary Notions

Mathematical optimization is about solving problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ Ω (objective function)
subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq (inequality constraints)

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq. (equality constraints)

 (1.1)

Ω ⊆ R𝑛 is the basic set and 𝑥 is the optimization variable or simply the variable of the problem.

We will assume that

• the functions 𝑓 , 𝑔𝑖 , ℎ 𝑗 : R
𝑛 → R are sufficiently smooth (𝐶2

functions),

• we have a finite number (possibly zero) of inequality and equality constraints, i. e., 𝑛ineq and 𝑛eq
are in N0.

We will assume Ω = R𝑛 , i. e., we consider only continuous optimization problems and without

implicit constraints.

Definition 1.1 (Elementary notions).
(𝑖) The set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

associated with an optimization problem (1.1) is termed the feasible set. Any 𝑥 ∈ 𝐹 is termed a
feasible point.

(𝑖𝑖) The inequality 𝑔𝑖 (𝑥) ≤ 0 is called active at a point 𝑥 if 𝑔𝑖 (𝑥) = 0 holds. It is called inactive in
case 𝑔𝑖 (𝑥) < 0. It is called violated if 𝑔𝑖 (𝑥) > 0 holds.

(𝑖𝑖𝑖) The value
𝑓 ∗ B inf {𝑓 (𝑥) | 𝑥 ∈ 𝐹 }

is termed the infimal value of problem (1.1).

(𝑖𝑣) In case 𝐹 = ∅, the problem (1.1) is said to be infeasible. In that case, we have 𝑓 ∗ = +∞. In case
𝑓 ∗ = −∞, the problem is said to be unbounded.
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(𝑣) A point 𝑥∗ ∈ 𝐹 is a global minimizer or globally optimal solution of (1.1) if

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹

holds. Equivalently, 𝑥∗ ∈ 𝐹 is a global minimizer if 𝑓 (𝑥∗) = 𝑓 ∗ holds. In this case, the infimal
value 𝑓 ∗ is also referred to as the global minimum or globally optimal value of (1.1).

(𝑣𝑖) A global minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹, 𝑥 ≠ 𝑥∗.

(𝑣𝑖𝑖) A point 𝑥∗ ∈ 𝐹 is a local minimizer or locally optimal solution of (1.1) if there exists a
neighborhood𝑈 (𝑥∗) such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗)

holds. In this case, 𝑓 (𝑥∗) is also referred to as a local minimum or a locally optimal value of
(1.1).

(𝑣𝑖𝑖𝑖) A local minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗), 𝑥 ≠ 𝑥∗.

(𝑖𝑥) An optimization problem (1.1) is solvable if it has at least one global minimizer, i. e., if the optimal
value is attained at some point. Otherwise, the problem is unsolvable.

Definition 1.2 (Classification of optimization problems).
(𝑖) An optimization problem (1.1) is said to be unconstrained in case 𝑛ineq = 𝑛eq = 0. Otherwise, it is

said to be equality constrained and/or inequality constrained.

(𝑖𝑖) Inequality constraints of the simple kind

ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛

with bounds ℓ𝑖 ∈ R ∪ {−∞} and 𝑢𝑖 ∈ R ∪ {∞} are called bound constraints.

(𝑖𝑖𝑖) When 𝑓 is a quadratic polynomial and 𝑔 and ℎ are affine linear functions, then (1.1) is called a
quadratic optimization problem or a quadratic program (QP).

(𝑖𝑣) In the general case, i. e., when (1.1) is not a quadratic program, we refer to (1.1) as a nonlinear
optimization problem or nonlinear program (NLP).

The emphasis in this class is on numerical techniques for unconstrained and constrained nonlinear

programs. We will see that fast algorithms take into account the optimality conditions of the respective

problem. Therefore we will also discuss optimality conditions.
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We will begin in Chapter 1 with algorithms for unconstrained optimization. Some of the content was

already part of the class Grundlagen der Optimierung (Herzog, 2022), but we will revisit the material

in more detail here. The theory for constrained problems is relatively involved and merits its own

chapter (Chapter 2). We will subsequently discuss major algorithmic ideas for constrained problems in

Chapter 3. Finally, we will review in Chapter 4 some computer-aided techniques to obtain derivatives

of functions, which the algorithms under consideration generally require.

Throughout the class, we will emphasize the connections between optimization and numerical linear

algebra.

§ 2 Notation and Background Material

In these lecture notes we use color codes for definitions and highlights. The natural numbers are

N = {1, 2, . . .}, and we write N0 for N∪ {0}. We denote open intervals by (𝑎, 𝑏) and closed intervals by
[𝑎, 𝑏]. We usually use Latin capital letters for matrices, Latin lowercase letters for vectors and Greek or

Latin lowercase letters for scalars. We use Id for the identity matrix. We distinguish the vector space

R𝑛 of column vectors from the vector space R𝑛 of row vectors.

§ 2.1 Vector Norms

An inner product (·, ·) onR𝑛 is a symmetric and positive definite bilinear form, i. e., a mapR𝑛×R𝑛 → R
with the following properties:

(𝑥, 𝑦) = (𝑦, 𝑥) (symmetry) (2.1a)

(𝛼1 𝑥1 + 𝛼2 𝑥2, 𝑦) = 𝛼1 (𝑥1, 𝑦) + 𝛼2 (𝑥2, 𝑦) (bilinearity part 1) (2.1b)

(𝑥, 𝛽1 𝑦1 + 𝛽2 𝑦2) = 𝛽1 (𝑥, 𝑦1) + 𝛽2 (𝑥, 𝑦2) (bilinearity part 2) (2.1c)

(𝑥, 𝑥) ≥ 0 and 𝑥 ≠ 0⇒ (𝑥, 𝑥) > 0 (positive definiteness) (2.1d)

for all 𝑥, 𝑥1, 𝑥2, 𝑦, 𝑦1, 𝑦2 ∈ R𝑛 and all 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ R.

Inner products on R𝑛 are in one-to-one correspondence with symmetric and positive definite (s. p. d.)

𝑛 × 𝑛 matrices. That is, every s. p. d. matrix𝑀 ∈ R𝑛×𝑛 induces an inner product

(𝑥, 𝑦)𝑀 B 𝑥ᵀ𝑀 𝑦,

and, on the other hand, every inner product (·, ·) on R𝑛 is induced by an s. p. d. matrix𝑀 . For simplicity,

we will refer to𝑀 itself as the inner product it induces, or use the term “𝑀-inner product”.

Every inner product (·, ·)𝑀 induces a norm
1
by way of

∥𝑥 ∥𝑀 B
√
𝑥ᵀ𝑀 𝑥. (2.2)

In particular, the Euclidean inner product 𝑥ᵀ𝑦 corresponds to the identity matrix𝑀 = Id, and we denote

the associated norm by ∥𝑥 ∥. We won’t be writing ⟨𝑥 , 𝑦⟩ or 𝑥 · 𝑦 for the Euclidean inner product.

1
We are only considering norms induced by inner products.
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§ 2.2 Matrix Norms

A matrix 𝐴 ∈ R𝑚×𝑛 represents a linear map by way of R𝑛 ∋ 𝑥 ↦→ 𝐴𝑥 ∈ R𝑚 . When R𝑛 is equipped

with the𝑀1-inner product and R
𝑚
is equipped with the𝑀2-inner product, we define thematrix norm

or operator norm of 𝐴 as

∥𝐴∥𝑀2←𝑀1
B max

𝑥≠0

∥𝐴𝑥 ∥𝑀2

∥𝑥 ∥𝑀1

. (2.3)

When𝑀1 and𝑀2 are both the Euclidean inner products, ∥𝐴∥Id←Id or simply ∥𝐴∥ is the largest singular
value of𝐴. In the general case, ∥𝐴∥𝑀2←𝑀1

is the largest singular value of a suitably generalized singular

value decomposition.

§ 2.3 Eigenvalues and Eigenvectors

Every symmetric matrix 𝐴 ∈ R𝑛×𝑛 possesses an orthogonal transformation to a diagonal matrix,

known as eigen decomposition or spectral decomposition. That is, there exists an orthogonal

matrix 𝑉 ∈ R𝑛×𝑛 and a diagonal matrix Λ ∈ R𝑛×𝑛 , such that

𝐴 = 𝑉Λ𝑉 ᵀ (2.4)

holds. The diagonal of Λ contains the eigenvalues _𝑖 , and the columns 𝑣𝑖 of 𝑉 are the corresponding

eigenvectors. This decomposition yields the complete solution to the eigenvalue problem

𝐴𝑣 = _ 𝑣. (2.5)

We also work with the generalized eigenvalue problem

𝐴𝑣 = _𝑀 𝑣 (2.6)

for the particular case where 𝐴 is still symmetric and the second matrix 𝑀 ∈ R𝑛×𝑛 is s. p. d.. There

exists an analogous generalized spectral decomposition

𝐴 = 𝑉Λ𝑉 ᵀ, (2.7)

where now 𝑉 is orthogonal w.r.t. the 𝑀−1 inner product, i. e., 𝑉 ᵀ𝑀−1𝑉 = Id holds. This implies

𝑉𝑉 ᵀ = 𝑀 . We also refer to the solutions of (2.6) as the eigenvalues/eigenvectors of 𝐴 w.r.t. 𝑀 or

eigenvalues/eigenvectors of the pair (𝐴;𝑀).

In view of the Courant-Fischer theorem for (generalized) eigenvalues of symmetric matrices, the

generalized Rayleigh quotient of 𝐴 w.r.t. 𝑀 satisfies

_min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑥

𝑥ᵀ𝑀 𝑥
≤ _max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.8)

The eigenvectors associated with the smallest and largest generalized eigenvalues _min(𝐴;𝑀) and
_max(𝐴;𝑀) satisfy the first respectively the second inequality with equality.
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cbn Nonlinear Optimization

Notice that the generalized eigenvalue problems (2.6) and

𝑀 𝑣 = _𝑀 𝐴−1𝑀 𝑣 (2.9a)

as well as

𝐴𝑀−1𝐴𝑣 = _𝐴 𝑣 (2.9b)

have the save eigenvalues and eigenvectors (provided in case of (2.9a) that 𝐴 is not only symmetric

but also invertible) since𝑀 𝑣 = _𝑀 𝐴−1𝑀 𝑣 ⇔ 𝑣 = _𝐴−1𝑀 𝑣 ⇔ 𝐴𝑣 = _𝑀 𝑣 and 𝐴𝑀−1𝐴𝑣 = _𝐴 𝑣 ⇔
𝑀−1𝐴𝑣 = _ 𝑣 ⇔ 𝐴𝑣 = _𝑀 𝑣 . Consequently, we obtain the following estimate for the generalized

Rayleigh quotients associated with (2.9):

_min(𝐴;𝑀) ≤
𝑥ᵀ𝑀 𝑥

𝑥ᵀ𝑀𝐴−1𝑀 𝑥
≤ _max(𝐴;𝑀) for all 𝑥 ≠ 0, (2.10a)

_min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑀−1𝐴𝑥

𝑥ᵀ𝐴𝑥
≤ _max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.10b)

Every s. p. d. matrix 𝐴 ∈ R𝑛×𝑛 possesses a unique s. p. d. matrix square root 𝐴1/2
. When 𝐴 = 𝑉Λ𝑉 ᵀ

is a spectral decomposition of 𝐴 with orthogonal 𝑉 , then

𝐴1/2 = 𝑉Λ1/2𝑉 ᵀ (2.11)

holds. Herein, Λ1/2
is the elementwise square root of the diagonal matrix Λ.

§ 2.4 Kantorovich Inequality

Suppose that 𝐴 is an s. p. d. matrix. Let us denote the extremal eigenvalues by 𝛼 B _min(𝐴) and
𝛽 B _max(𝐴). Moreover, since 𝐴 is s. p. d., it follows that its condition number2 is given by

^ B
𝛽

𝛼
. (2.12)

Notice that a condition number always satisfies ^ ≥ 1. From the Rayleigh quotient estimate (2.8) (with

𝑀 = Id), we have

𝑥ᵀ𝐴𝑥

∥𝑥 ∥2 ≤ 𝛽.

Moreover, since the eigenvalues of 𝐴−1 are the reciprocals of those of 𝐴, we have _max(𝐴−1) =

1/_min(𝐴) = 1/𝛼 and thus

𝑥ᵀ𝐴−1 𝑥

∥𝑥 ∥2 ≤ 1

𝛼
.

These inequalities hold for all 𝑥 ∈ R𝑛 \ {0}, and they imply

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1 𝑥)
∥𝑥 ∥4 ≤ 𝛽

𝛼
.

This estimate, however, is not sharp in general. (Quiz 2.1: Can you explain why not?) The Kantorovich

inequality improves this estimate.

2
Generally, the condition of an invertible matrix 𝐴 is ^ = ∥𝐴∥ ∥𝐴−1∥. This is equal to 𝜎max (𝐴)/𝜎min (𝐴) with the extremal

singular values 𝜎max (𝐴) and 𝜎min (𝐴). Since 𝐴 is symmetric, its singular values are just the absolute values of its

eigenvalues, and since 𝐴 is also positive definite, we have 𝜎max (𝐴) = _max (𝐴) = 𝛽 and 𝜎min (𝐴) = _min (𝐴) = 𝛼 .
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Lemma 2.1 (Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d., 𝛼 B _min(𝐴) and 𝛽 B _max(𝐴)
are its extremal eigenvalues, and ^ = 𝛽/𝛼 is its condition number. Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝛼 + 𝛽)

2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.13a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the condition number ^ = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (^ + 1)

2

4^
≤ ^. (2.13b)

Proof. The Cauchy-Schwarz inequality implies

∥𝑥 ∥2 = 𝑥ᵀ𝑥 = 𝑥ᵀ𝐴−1/2𝐴1/2𝑥 ≤ ∥𝐴−1/2𝑥 ∥ ∥𝐴1/2𝑥 ∥ .

By squaring this, we obtain

∥𝑥 ∥4 ≤ ∥𝐴−1/2𝑥 ∥2 ∥𝐴1/2𝑥 ∥2 = (𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)

and thus the lower bound in (2.13).

From here on, the proof follows Anderson, 1971, as reproduced in the Master’s thesis Alpargu, 1996,

Section 1.2.2. Let _1, . . . , _𝑛 > 0 be the eigenvalues of 𝐴 (in any order), and let 𝑣1, . . . , 𝑣𝑛 be an

orthonormal set of associated eigenvectors. We represent 𝑥 ∈ R𝑛 \ {0} as 𝑥 =
∑𝑛

𝑖=1 𝛾𝑖 𝑣𝑖 . Suppose,

w.l.o.g., that ∥𝑥 ∥2 = ∑𝑛
𝑖=1 𝛾

2

𝑖 = 1 holds. Inserting the representation of 𝑥 yields

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 =

[ 𝑛∑︁
𝑖=1

_𝑖 𝛾
2

𝑖

]
︸      ︷︷      ︸

=E(𝑇 )

[ 𝑛∑︁
𝑖=1

1

_𝑖
𝛾2𝑖

]
︸       ︷︷       ︸

=E(1/𝑇 )

.

It is helpful to think about the two factors on the right-hand side as expected values of a “random

variable” 𝑇 and 1/𝑇 , respectively. Here 𝑇 takes the values _𝑖 ∈ [𝛼, 𝛽] with “probability” 𝛾2𝑖 . For any

0 < 𝛼 ≤ 𝑇 ≤ 𝛽 , we can estimate

0 ≤ (𝛽 −𝑇 ) (𝑇 − 𝛼) = (𝛽 + 𝛼 −𝑇 )𝑇 − 𝛼 𝛽,

and thus

1

𝑇
≤ 𝛼 + 𝛽 −𝑇

𝛼 𝛽
.

Taking the expected value, this implies

E(𝑇 ) E(1/𝑇 ) ≤ E(𝑇 ) 𝛼 + 𝛽 − E(𝑇 )
𝛼 𝛽

=
(𝛼 + 𝛽)2
4𝛼 𝛽

− 1

𝛼 𝛽

[
E(𝑇 ) − 1

2

(𝛼 + 𝛽)
]
2

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
.

This shows that essential upper bound in (2.13). The remaining inequality follows directly from

0 < 𝛼 ≤ 𝛽 . □
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Instead of the Euclidean norm, we can also use the norm induced by the𝑀-inner product.

Corollary 2.2 (Generalized Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 are 𝑀 are both s. p. d.,
𝛼 B _min(𝐴;𝑀) and 𝛽 B _max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝑀𝐴−1𝑀 𝑥)

∥𝑥 ∥4
𝑀

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.14a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the generalized condition number ^ = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4

𝑀

≤ (^ + 1)
2

4^
≤ ^. (2.14b)

We do not give a proof of Corollary 2.2 here; see for instance Herzog, 2022, Folgerung 4.14.

§ 2.5 Functions and Derivatives

• Given a function 𝑓 : R𝑛 → R and 𝑥 ∈ R𝑛 , the derivative of the partial function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑒 (𝑖 ) )
at 𝑡 = 0 is the 𝑖-th partial derivative of 𝑓 at 𝑥 , briefly: 𝜕

𝜕𝑥𝑖
𝑓 (𝑥). Here 𝑒 (𝑖 ) = (0, . . . , 0, 1, 0, . . . , 0)ᵀ

is one of the standard basis vectors of R𝑛 . In other words,

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑒 (𝑖 ) ) − 𝑓 (𝑥)
𝑡

.

• More generally, the derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (two-sided)
directional derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝜕

𝜕𝑑
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• The right-sided derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (one-sided) directional
derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝑓 ′(𝑥 ;𝑑) = lim

𝑡↘0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• A function 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 if there exists a row vector 𝑣 ∈ R𝑛 such that

𝑓 (𝑥 + 𝑑) − 𝑓 (𝑥) − 𝑣 𝑑
∥𝑑 ∥ → 0 for 𝑑 → 0.

In this case, the vector 𝑣 is the (total) derivative of 𝑓 at 𝑥 , and it is denoted by 𝑓 ′(𝑥).
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• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥) =
(
𝜕𝑓 (𝑥 )
𝜕𝑥1

, · · · , 𝜕𝑓 (𝑥 )
𝜕𝑥𝑛

)
∈ R𝑛 .

The transposed vector (a column vector)

∇𝑓 (𝑥) =
©«
𝜕𝑓 (𝑥 )
𝜕𝑥1
...

𝜕𝑓 (𝑥 )
𝜕𝑥𝑛

ª®®®¬ = 𝑓 ′(𝑥)ᵀ ∈ R𝑛

is the gradient (w.r.t. the Euclidean inner product) of 𝑓 at 𝑥 .

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥 ;𝑑) = 𝜕

𝜕𝑑
𝑓 (𝑥) = 𝑓 ′(𝑥) 𝑑

holds for all 𝑑 ∈ R𝑛 . That is, the one-sided and two-sided directional derivatives of 𝑓 at 𝑥 agree,

and they can be evaluated by applying the derivative 𝑓 ′(𝑥) to the direction 𝑑 .

• A function 𝑓 : R𝑛 → R is continuously partially differentiable or briefly: 𝐶1(R𝑛,R), if all
partial derivatives

𝜕𝑓 (𝑥 )
𝜕𝑥𝑖

, as functions of 𝑥 , are continuous. 𝐶1
-functions are differentiable, and

the derivative 𝑓 ′ is continuous.

• A vector-valued function 𝐹 : R𝑛 → R𝑚 is differentiable at 𝑥 ∈ R𝑛 if all component func-

tion 𝐹1, . . . , 𝐹𝑚 are differentiable at 𝑥 . In this case, the derivative 𝐹 ′(𝑥) is given by the Jacobian
of 𝐹 at 𝑥 , i. e., by ©«

𝜕𝐹1(𝑥)
𝜕𝑥1

· · · 𝜕𝐹1(𝑥)
𝜕𝑥𝑛

...
...

𝜕𝐹𝑚 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹𝑚 (𝑥)
𝜕𝑥𝑛

ª®®®®®¬
∈ R𝑚×𝑛 .

• 𝐹 is continuously partially differentiable if all entries of the Jacobian are continuous as

functions of 𝑥 . 𝐶1
-functions are differentiable, and the derivative 𝐹 ′ is continuous.

• A function 𝑓 : R𝑛 → R is twice differentiable at 𝑥 ∈ R𝑛 if 𝑓 is differentiable in a neighbor-

hood of 𝑥 and the derivative 𝑥 ↦→ 𝑓 ′(𝑥) ∈ R𝑛 is differentiable at 𝑥 . In this case, the second

derivative 𝑓 ′′(𝑥) is given by the Hessian of 𝑓 at 𝑥 , i. e., by the matrix of second-order partial

derivatives

(
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑖 𝜕𝑥 𝑗

)𝑛
𝑖,𝑗=1

=

©«

𝜕2 𝑓 (𝑥 )
𝜕𝑥2

1

𝜕2 𝑓 (𝑥 )
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓 (𝑥 )
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓 (𝑥 )
𝜕𝑥2

2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥2𝜕𝑥𝑛

...
...

...
𝜕2 𝑓 (𝑥 )
𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓 (𝑥 )
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥2

𝑛

ª®®®®®®®¬
.

When 𝑓 is twice differentiable at 𝑥 , then the Hessian is symmetric by Schwarz’ theorem.
3

3
See for instance Cartan, 1967, Proposition 5.2.2
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• A function 𝑓 : R𝑛 → R is twice continuously partially differentiable or briefly: 𝐶2(R𝑛,R), if
all entries of the Hessian are continuous as functions of 𝑥 . 𝐶2

-functions are twice differentiable.

§ 2.6 Taylor’s Theorem

We are going to state Taylor’s theorem in two variants:

Theorem 2.3 (Taylor, see Cartan, 1967, Theorem 5.6.3). Suppose that 𝐺 ⊆ R𝑛 open, 𝑘 ∈ N0 and
𝑓 : 𝐺 → R 𝑘 times differentiable, and (𝑘 + 1) times differentable at 𝑥0 ∈ 𝐺 . Then for all Y > 0, there exists
𝛿 > 0 such that

in case 𝑘 = 0 :

��𝑓 (𝑥0 + 𝑑) − 𝑓 (𝑥0) − 𝑓 ′(𝑥0) 𝑑
�� ≤ Y ∥𝑑 ∥,

in case 𝑘 = 1 :

��𝑓 (𝑥0 + 𝑑) − 𝑓 (𝑥0) − 𝑓 ′(𝑥0) 𝑑 −
1

2

𝑑ᵀ 𝑓 ′′(𝑥0)𝑑
�� ≤ Y ∥𝑑 ∥2.

for all ∥𝑑 ∥ < 𝛿 .

Theorem 2.4 (Taylor, see Geiger, Kanzow, 1999, Satz A.2 or Heuser, 2002, Satz 168.1).
Suppose that 𝐺 ⊆ R𝑛 is open, 𝑘 ∈ N0 and 𝑓 : 𝐺 → R (𝑘 + 1) times continuously partially differentiable,
briefly a 𝐶𝑘+1(𝐺,R) function. Suppose that 𝑥0 and 𝑥0 + 𝑑 and the entire line segment between them lie in
𝐺 . Then there exists b ∈ (0, 1) such that

in case 𝑘 = 0 : 𝑓 (𝑥0 + 𝑑) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0 + b 𝑑) 𝑑 (mean value theorem),

in case 𝑘 = 1 : 𝑓 (𝑥0 + 𝑑) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0) 𝑑 +
1

2

𝑑ᵀ 𝑓 ′′(𝑥0 + b 𝑑) 𝑑.

§ 2.7 Convergence Rates

We denote (vector-valued) sequencesN→ R𝑛 by

(
𝑥 (𝑘 )

)
and not (𝑥𝑘 ) etc., in order to avoid a conflict of

notation with the components of a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)ᵀ ∈ R𝑛 . The subsequence of
(
𝑥 (𝑘 )

)
obtained

by the strictly increasing sequence N ∋ ℓ ↦→ 𝑘 (ℓ ) ∈ N is denoted by

(
𝑥 (𝑘

(ℓ ) ) )
.

We introduce various convergence rates for sequences in order to characterize the speed of convergence,

e. g., of iterates in an algorithm.

Definition 2.5 (Q-convergence rates4).
Suppose that

(
𝑥 (𝑘 )

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-linearly w.r.t. the𝑀-norm if there exists 𝑐 ∈ (0, 1) such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N sufficiently large.
4
“Q” stands for “quotient”.

https://tinyurl.com/scoop-nlo 13

https://tinyurl.com/scoop-nlo


R. Herzog cbn

(𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

Y (𝑘 )
)
such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ Y (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N.

(𝑖𝑖𝑖) Suppose that 𝑥 (𝑘 ) → 𝑥∗.
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-quadratically w.r.t. the𝑀-norm if

there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2𝑀 for all 𝑘 ∈ N.

Note: Q-superlinear and Q-quadratic convergence of a sequence are independent of the norm (inner

product)𝑀 . However, the property of Q-linear convergence can be lost when changing the norm.

Definition 2.6 (R-convergence rates
5
).

Suppose that
(
𝑥 (𝑘 )

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-linearly w.r.t. the𝑀-norm if there exists a null sequence

(
Y (𝑘 )

)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ Y (𝑘 ) for all 𝑘 ∈ N,

and
(
Y (𝑘 )

)
converges to zero Q-linearly w.r.t. | · |.

(𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

Y (𝑘 )
)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ Y (𝑘 ) for all 𝑘 ∈ N,

and
(
Y (𝑘 )

)
converges to zero Q-superlinearly w.r.t. | · |.

(𝑖𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-quadratically w.r.t. the𝑀-norm if there exists a null sequence(

Y (𝑘 )
)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ Y (𝑘 ) for all 𝑘 ∈ N,

and
(
Y (𝑘 )

)
converges to zero Q-quadratically w.r.t. | · |.

Note: The R-convergence modes are slightly weaker than the respective Q-convergence rates. Q-

convergence considers the decrease in the distance to the limit ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 in every step of the

sequence. By contrast, R-convergence considers the decrease overall.

§ 2.8 Convexity

Convexity plays a very important role in optimization in general. In this class, however, we will rely

on it only scarcely. We briefly recall here some elements of convexity. You may study Herzog,

2022, § 13 if you wish to have more background information.

5
“R” stands for “root”.
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Definition 2.7 (Convex function).
A function 𝑓 : R𝑛 → R is termed

(𝑖) convex in case
𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.15)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑖) strictly convex in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) < 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.16)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ (0, 1).

(𝑖𝑖𝑖) `-strongly convex or strongly convex with parameter ` > 0 in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) + `

2

𝛼 (1 − 𝛼)∥𝑥 − 𝑦 ∥2 ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.17)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑣) concave (concave) or strictly concave or constrly concave if −𝑓 is convex or strictly convex or
strongly convex, respectively.

Theorem 2.8 (Characterization of convexity via first-order derivatives).
Suppose that 𝑓 : R𝑛 → R is differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 is convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 ,
𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.18)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 , (
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ 0 (2.19)

holds. Equation (2.19) means that 𝑓 ′ is amonotone operator.

(b) The following are equivalent:

(𝑖) 𝑓 ist strictly convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,

𝑓 (𝑥) − 𝑓 (𝑦) > 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.20)

holds.
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(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) > 0. (2.21)

Equation (2.21) means that 𝑓 ′ is a strictly monotone operator.

(c) The following are equivalent:

(𝑖) 𝑓 ist strongly convex.

(𝑖𝑖) There exists ` > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) + `

2

∥𝑥 − 𝑦 ∥2 (2.22)

holds.

(𝑖𝑖𝑖) There exists ` > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ ` ∥𝑥 − 𝑦 ∥2. (2.23)

Equation (2.23) means that 𝑓 ′ is a strongly monotone operator.

Theorem 2.9 (Characterization of convexity via second-order derivatives).
Suppose that 𝑓 : R𝑛 → R is twice differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 ist convex.

(𝑖𝑖) 𝑓 ′′ is everywhere positive semidefinite (has only non-negative eigenvalues).

(b) When 𝑓 ′′ is everywhere positive definite, then 𝑓 is strictly convex.

(c) The following are equivalent:

(𝑖) 𝑓 is strongly convex with parameter ` > 0.

(𝑖𝑖) The smallest eigenvalue of 𝑓 ′′(𝑥) satisfies _min(𝑓 ′′(𝑥)) ≥ ` > 0 for all 𝑥 ∈ R𝑛 .

§ 2.9 Miscellanea

We denote the interior of a set𝑀 ⊆ R𝑛 by int𝑀 and its closure by cl𝑀 . Given Y > 0 and 𝑥 ∈ R𝑛 ,
𝐵𝑀
Y (𝑥0) B

{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥0∥𝑀 < Y
}

denotes the open Y-ball w.r.t. the𝑀-norm about 𝑥0. Similarly, the closed Y-ball is

cl𝐵𝑀
Y (𝑥0) B

{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥0∥𝑀 ≤ Y
}
.

The ceiling function ⌈𝑥⌉ returns the smallest integer ≥ 𝑥 .
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Chapter 1 Numerical Techniques for Unconstrained
Optimization Problems

We discuss in this chapter numerical methods for the unconstrained version of (1.1), i. e.,

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The reason for discussing the unconstrained problem first is that we can introduce the essential

algorithmic techniques without the difficulties of any constraints present.

Up front, we mention that we can only hope to find local minimizers. Determining global minimizers is

generally much harder and only possible under additional assumptions on the objective, and generally

only in relatively small dimensions 𝑛 ∈ N. A notable case of an additional assumption is that of a

convex objective 𝑓 . In this case, every local minimizer is already a global minimizer. Morever, first-

order optimality conditions are already sufficient for optimality, and we do not require second-order

conditions.

§ 3 Optimality Conditions

We assume you have seen the following first- and second-order optimality conditions, so we only

briefly recall them; see Herzog, 2022, § 3 for more details.

Theorem 3.1 (First-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is differentiable at 𝑥∗. Then 𝑓 ′(𝑥∗) = 0.

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. We consider the curve 𝛾 : (−𝛿, 𝛿) → R𝑛 , 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 . For
sufficiently small 𝛿 > 0, this curve runs within the neighborhood of local optimality of 𝑥∗. This implies

that 𝑓 ◦ 𝛾 has a local minimizer at 𝑡 = 0.

From this local optimality, we infer that the difference quotient satisfies

𝑓 (𝛾 (𝑡)) − 𝑓 (𝛾 (0))
𝑡

=
𝑓 (𝑥∗ + 𝑡 𝑑) − 𝑓 (𝑥∗)

𝑡

{
≥ 0 for 𝑡 > 0,

≤ 0 for 𝑡 < 0.

On the other hand, this difference quotient converges to 𝑓 ′(𝑥∗) 𝑑 as 𝑡 → 0. Consequently, we must

have 𝑓 ′(𝑥∗) 𝑑 = 0. Since 𝑑 ∈ R𝑛 was arbitrary, this means 𝑓 ′(𝑥∗) = 0. □
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A point 𝑥 ∈ R𝑛 with the property 𝑓 ′(𝑥) = 0 is termed a stationary point of 𝑓 .

Theorem 3.2 (Second-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is twice differentiable at 𝑥∗. Then the Hessian
𝑓 ′′(𝑥∗) is positive semidefinite.1

Proof. Es sei 𝑑 ∈ R𝑛 beliebig. Wie in Theorem 3.1 we define 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 and again consider the

objective along the curve, i. e., 𝜑 B 𝑓 ◦ 𝛾 , which has a local minimizer at 𝑡 = 0. Since 𝜑 is twice

differentiable at 𝑡 = 0, Theorem 2.3 implies the following: for all Y > 0 there exists 𝛿 > 0 such that��𝜑 (𝑡) − 𝜑 (0) − 𝜑 ′(0) 𝑡 − 1

2

𝜑 ′′(0) 𝑡2
�� ≤ Y 𝑡2

holds for all |𝑡 | < 𝛿 . In view of Theorem 3.1, 𝜑 ′(0) = 0, and the local optimality implies 𝜑 (0) ≤ 𝜑 (𝑡)
for all |𝑡 | sufficiently small. We thus obtain

− 1
2

𝜑 ′′(0) 𝑡2 ≤ 𝜑 (𝑡) − 𝜑 (0) − 1

2

𝜑 ′′(0) 𝑡2 ≤ Y 𝑡2

for all |𝑡 | sufficiently small, whence

1

2

𝜑 ′′(0) ≥ −Y.

Since Y > 0 was arbitrary, we conclude 𝜑 ′′(0) = 𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 0. And since 𝑑 ∈ R𝑛 was arbitrary, we

have shown 𝑓 ′′(𝑥∗) to be positive semidefinite. □

Theorem 3.3 (Second-order sufficient optimality condition).
Suppose that 𝑓 is twice differentiable at 𝑥∗ and

(𝑖) 𝑓 ′(𝑥∗) = 0 and

(𝑖𝑖) 𝑓 ′′(𝑥∗) is positive definite2, with minimal eigenvalue ` > 0.

Then for every 𝛽 ∈ (0, `), there exists a neighborhood𝑈 (𝑥∗) of 𝑥∗ such that

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝛽

2

∥𝑥 − 𝑥∗∥2 for all 𝑥 ∈ 𝑈 (𝑥∗) . (3.1)

In particular, 𝑥∗ is a strict local minimizer of 𝑓 .

Proof. Here we use Theorem 2.3 directly for 𝑓 (not along a curve). For every Y > 0, there exists 𝛿 > 0

such that ��𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 𝑓 ′(𝑥∗) 𝑑 − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑
�� ≤ Y ∥𝑑 ∥2

holds for all ∥𝑑 ∥ < 𝛿 . According to the assumptions, 𝑓 ′(𝑥∗) = 0 holds. Therefore,

−Y ∥𝑑 ∥2 ≤ 𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑

1
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being non-negative.

2
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being positive.
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holds for all ∥𝑑 ∥ < 𝛿 . This implies

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − Y ∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 .

From (2.8) (with 𝑀 = Id), the values of the Rayleigh quotient associated with the symmetric matrix

𝑓 ′′(𝑥∗) are bounded above and below by the extremal eigenvalues of 𝑓 ′′(𝑥∗). In particular, we have

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ ` ∥𝑑 ∥2 for all 𝑑 ∈ R𝑛 .

We can now finalize the proof: for 𝛽 ∈ (0, `), choose Y B (` − 𝛽)/2 > 0 and an appropriate value of

𝛿 > 0. Then we have

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − Y ∥𝑑 ∥2

≥ 𝑓 (𝑥∗) + `

2

∥𝑑 ∥2 − Y ∥𝑑 ∥2

= 𝑓 (𝑥∗) + 𝛽

2

∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 . □

Property (3.1) means that 𝑓 has at least quadratic growth near 𝑥∗. Equivalently, 𝑓 is locally strongly

convex with parameter 𝛽 ∈ (0, `).
End of Week 1
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