EXERCISE 11

Date issued: 26th June 2023
Date due: 4th July 2023

Homework Problem 11.1 (Examples for generalized Newton)
5 Points
For the nonlinear functions $F: \mathbb{R} \rightarrow \mathbb{R}$ and the set valued functions $N: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ below, find all solutions z^{*} of the generalized equation

$$
0 \in F(z)+N(z)
$$

and determine, at which solutions the problem is strongly regular.
(i) $F(z):=z^{2}-1$ and $N(z):=\{0\}$
(ii) $F(z):=z^{2}-1$ and $N(z):=\mathbb{R}_{\geq}$
(iii) $F(z):=(z-1)^{2}$ and $N(z):=\mathcal{N}_{\mathbb{R}_{\geq}}(z)$

Homework Problem 11.2 (Generalized Newton for nonlinear complementarity problems) 5 Points Implement the generalized Newton's method for solving inclusion problems of the form

$$
0 \in F(z)+N(z)
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a function of class C^{1} and $N: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is a set-valued map.
Make the termination criterion and the subproblem solver user-supplied parameters and apply your implementation to the problem in homework problem 11.1 item (iii). For the subsystem solves, you can employ a linear complementarity problem solver such as Lemke's method, see, e.g., https:// github.com/AndyLamperski/lemkelcp and you can choose the termination criterion based on the violation of complementarity in terms of $\min (F(x), 0), \min (x, 0)$ and $|F(x) x|$.

Homework Problem 11.3 (Projected CG actually projects)
Prove that Line 13 of the projected M-preconditioned CG method Algorithm 13.2 applied to the problem

$$
\begin{array}{ll}
\text { Minimize } & \frac{1}{2} d^{\top} A d-b^{\top} d \tag{13.1}\\
\text { subject to } & B d=c
\end{array}
$$

in fact computes the unique projection of the cost functionals M-steepest descent direction onto ker (B).

Homework Problem 11.4 (On the stopping criterion for the projected preconditioned CG) 6 Points Consider the equality constrained linear-quadratic problem

$$
\begin{array}{ll}
\text { Minimize } & f(d):=\frac{1}{2} d^{\top} A d-b^{\top} d \tag{13.1}\\
\text { subject to } & B d=c
\end{array}
$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and $B \in \mathbb{R}^{m \times n}$ has full rank. Additionally, let $M \in \mathbb{R}^{n \times n}$ be s.p.d..
(i) Show that if d^{*} is a solution to (13.1), then $\operatorname{proj}_{\operatorname{ker} B}^{M}\left(M^{-1} \nabla f\left(d^{*}\right)\right)=0$.

Hint: You can for example argue using convexity.
(ii) Let $Z \in \mathbb{R}^{n \times n-m}$ be an M-orthonormal matrix whose columns span the space $\operatorname{ker}(B)$, assume that $Z^{\top} A Z \in \mathbb{R}^{n-m \times n-m}$ is positive definite and let $d^{*} \in \mathbb{R}^{n}$ denote the unique solution to (13.1). Show that

$$
\left\|d-d^{*}\right\|_{A} \leq \sqrt{\left\|\left(Z^{\top} A Z\right)^{-1}\right\|}\left\|\operatorname{proj}_{\operatorname{ker} B}^{M}\left(\nabla_{M} f(d)\right)\right\|_{M}
$$

for all $d \in\left\{d \in \mathbb{R}^{n} \mid B d=c\right\}$.

Please submit your solutions as a single pdf and an archive of programs via moodle.

