Exercise 9

Date issued: 12th June 2023
Date due: 20th June 2023

Homework Problem 9.1 (Finding Solutions using First and Second Order Information) 6 Points
Consider the problem

$$
\left.\begin{array}{rl}
\text { Maximize } & -\left(x_{1}-2\right)^{2}-2\left(x_{2}-1\right)^{2} \quad \text { where } x \in \mathbb{R}^{2} \\
\text { subject to } & x_{1}+4 x_{2} \leq 3 \\
\text { and } & x_{1} \geq x_{2}
\end{array}\right\}
$$

Determine, which admissible points satisfy a constraint qualification (ACQ/GCQ/MFCQ/LICQ) and use first and second order information to compute all stationary points and solve the problem, i.e., find all optima and explain why they are local and/or global solutions.

Homework Problem 9.2 (Comparing the Strength of CQs)
6 Points
From the lecture notes, we know that

$$
\begin{equation*}
\text { LICQ } \stackrel{\text { Lemma } 8.17}{ } \xrightarrow{\text { MFCQ }} \xrightarrow{\text { Corollary } 8.14} \text { ACQ } \xrightarrow{\text { Definition } 8.6} \text { GCQ. } \tag{8.15}
\end{equation*}
$$

Show that generally

$$
\mathrm{AICQ} \stackrel{\left(\mathrm{P}_{3}\right)}{\not} \mathrm{MFCQ} \stackrel{\left(\mathrm{P}_{2}\right)}{\not} \mathrm{ACQ} \stackrel{\left(\mathrm{P}_{1}\right)}{\not} \mathrm{GCQ}
$$

by investigating the following problems P_{1} to P_{3} at $x^{*}=(0,0)^{\top}$:
$\left.\begin{array}{ll}\text { Minimize } & f(x) \quad \text { where } x \in \mathbb{R}^{2} \\ \text { subject to } & x_{1} \leq 0 \\ & x_{2} \leq 0 \\ & x_{1} x_{2}=0\end{array}\right\}$

$$
\begin{align*}
& \begin{array}{ll}
\text { Minimize } & f(x) \\
\text { subject to } & q\left(x_{1}\right)-x_{2} \leq 0 \\
& q\left(x_{1}\right)+x_{2} \leq 0
\end{array} \quad \text { where } x \in \mathbb{R}^{2}, \quad \text { for } \quad q\left(x_{1}\right):= \begin{cases}\left(x_{1}+1\right)^{2}, & x_{1}<-1, \\
0, & -1 \leq x_{1} \leq 1, \\
\left(x_{1}-1\right)^{2}, & x_{1}>1,\end{cases} \tag{2}\\
& \left.\begin{array}{lll}
\text { Minimize } & f(x) & \text { where } x \in \mathbb{R}^{2} \\
\text { subject to } & -x_{1}^{3}-x_{2} \leq 0 \\
& -x_{2} \leq 0
\end{array}\right\} \tag{3}
\end{align*}
$$

Homework Problem 9.3
(CQs are invariant under Slack Transformation)
10 Points
We can reformulate the original nonlinear problem

$$
\left.\begin{array}{rll}
\text { Minimize } & f(x) & \text { where } x \in \mathbb{R}^{n} \tag{7.1}\\
\text { subject to } & g_{i}(x) \leq 0 & \text { for } i=1, \ldots, n_{\text {ineq }} \\
\text { and } & h_{j}(x)=0 & \text { for } j=1, \ldots, n_{\text {eq }}
\end{array}\right\}
$$

by introducing a so called slack variable $s \in \mathbb{R}^{n_{\text {ineq }}}$ to obtain the simple one-sided box-constrained problem

$$
\left.\begin{array}{rll}
\text { Minimize } & f(x) & \text { where }(x, s) \in \mathbb{R}^{n \times n_{\text {ineq }}} \tag{s}\\
\text { subject to } & g_{i}(x)+s=0 & \text { for } i=1, \ldots, n_{\text {ineq }} \\
\text { and } & -s \leq 0 & \\
\text { and } & h_{j}(x)=0 & \text { for } j=1, \ldots, n_{\text {eq }}
\end{array}\right\} .
$$

(i) Derive the KKT-system of $\left(7 \cdot 1_{\mathrm{s}}\right)$ and show that there is a one-to-one connection between the solutions of the KKT systems corresponding to (7.1) and (7.1s).
(ii) Show that GCQ/ACQ/MFCQ/LICQ is satisfied at a feasible (x, s) for $\left(7 \cdot 1_{\mathrm{s}}\right)$ if the respective condition is satisfied at x for (7.1).

For which CQs can you show equivalence?

Homework Problem 9.4 (Multiplier Compactness is Equivalent to MFCQ)
6 Points
(i) Use Farkas' Lemma (Lemma 7.11 in the lecture notes) to show that for $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{n_{\mathrm{eq}} \times n}$ with $\operatorname{rank}(B)=n_{\text {eq }}$ and $p \leq n_{\text {ineq }}$ either the system

$$
\begin{equation*}
A d<0, \quad B d=0 \tag{0.1}
\end{equation*}
$$

has a solution $d \in \mathbb{R}^{n}$ or

$$
\begin{equation*}
A^{\top} \mu+B^{\top} \lambda=0 \tag{0.2}
\end{equation*}
$$

has a solution $(\mu, \lambda) \neq 0$ with $\mu \geq 0$.
Hint: Start with the existence of a nontrivial solution to (o.2). Focus the nontriviality on μ. Transform the conditions $\mu \neq 0, \mu \geq 0$ into a linear condition with a sign condition using a normalization step with respect to $\|\cdot\|_{1}$. Split λ into its positive and negative part. Apply Farkas' Lemma. Success.
(ii) Let $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ be a KKT-point of (7.1). Show that MFCQ is satisfied at x^{*} if and only if the set of Lagrange multipliers that solve the KKT system for x^{*} is compact.

Please submit your solutions as a single pdf and an archive of programs via moodle.

