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cbn Introduction to Optimization

§ 1 Introduction

Optimization is about solving problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 (objective (function))
subject to 𝑔𝑖 (𝑥) ≤ 0 with 𝑖 = 1, . . . , 𝑛ineq (inequality constraints)

and ℎ 𝑗 (𝑥) = 0 with 𝑗 = 1, . . . , 𝑛eq. (equality constraints)

 (1.1)

𝑥 is termed the optimization variable, decision variable, or simply the variable of the problem.
Moreover, we consider problems where

• the functions 𝑓 , 𝑔𝑖 , ℎ 𝑗 : R𝑛 → R are sufficiently smooth,

• the number 𝑛ineq of inequality constraints and the number 𝑛eq of equality constraints are finite
(possibly zero).

More precisely, problems of type (1.1) fall into the realm of continuous optimization. In case some
or all components of 𝑥 are to be sought in a discrete set (such as the integers Z), we have a mixed
discrete-continuous problem or even a fully discrete problem, which we do not consider in this
course.

Solving an optimization problem usually includes the following steps:

(1) Modeling the problem.
This step can be one of the most complex ones in the entire process. In particular, we need to
answer the following questions:

(a) What do we use as our optimization variable(s)? What is the significance of each component
of 𝑥?

(b) How do we formulate the objective function? What is its significance?
(c) Do we need to formulate constraints? How do we model them? What is the significance of

each of the constraints?
(d) Are there any constants in the problem? What are their values and what is their signifi-

cance?

(2) Understanding the problem’s characteristics.
There are various dimensions along which you can classify optimization problems. Here are
some examples:

(a) What is the dimension 𝑛 of the optimization variable 𝑥 ∈ R𝑛?
(b) Is the problem constrained or unconstrained?
(c) Is the objective linear or nonlinear? Are the constraints (if any) linear or nonlinear?
(d) Is the problem convex or non-convex?

The answer to these questions has an impact on the next step, the selection of a suitable solver.
The more specifically the solver fits the problem, the more efficient the solution process usually

https://scoop.iwr.uni-heidelberg.de/teaching/2022ws/short-course-optimization/ 5

https://scoop.iwr.uni-heidelberg.de/teaching/2022ws/short-course-optimization/


R. Herzog cbn

is. For instance, a linear optimization problem (where the objective and all constraints are affine
functions of 𝑥 ) is best solved using a solver tailored to linear optimization problems (such as an
implementation of the simplex method). It is “overkill” to solve a linear optimization problem
using a solver capable of solving general nonlinear constrained problems and the more general
optimization procedure will typically perform poorer than specialized routines (although it
should usually succeed).

(3) Picking a numerical solver.
Pick your solver depending on the problem’s characteristic as well as availability/license and
your preferred programming language.

The following resources can help you identify suitable solvers:

• Hans Mittelmann’s Decision Tree for Optimization Software
• the Optimization Tree of the NEOS project (a free internet-based service for solving
optimization problems)

• the list of available solvers in the COIN-OR project
• the respective documentation of various optimization libraries, such as

⊲ Matlab’s Optimization Toolbox
⊲ the scipy.optimize Python package
⊲ the CasADi package, which has Matlab, Python and C++ bindings

(4) Implementing the functions describing the problem for the solver.
You will need to implement the objective and constraint functions in a format suitable for the
solver selected in the respective programming language (such as Matlab, Python, Julia, or
C++ for instance).

There are also specific modeling languages for optimization problems, e. g., AMPL, which are, in
principle, independent of the solver. However, not all solvers will accept all input formats.

Finally, some solver packages such as CasADi (Python, Matlab) and JuMP (Julia), include
their own modeling paradigms which facilitate the formulation of optimization problems.

(5) Running the solver.
Launch the solver selected for the problem. In some cases, you may want to modify the default
settings (such as subalgorithms, tolerances, maximum number of iterations etc.). Most solvers
will accept an initial guess (often termed 𝑥0) for the solution, which is often beneficial to set to a
reasonable value.

(6) Checking and interpreting the result.
Carefully check the flag or message returned by the solver, i. e., whether it has converged or not.
When successful, interpret and verify the result. Check that the solution “makes sense”. Are all
the constraints satisfied as expected? Are you happy with the result, or did you perhaps expect
something different? Did you forget to include certain constraints? (A classical example is that
you expect the solution to be non-negative but forget to model this constraint.)
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The above steps are not necessarily run through sequentially. For instance, it might turn out later in
the process that a different formulation of the problem than originally selected is more favorable for
the solver, so one needs to go back. Or we might figure out from the solution that we forgot to model
certain constraints, which we then include and run the solver again.

It is also important to understand that, given a problem in text form, the above steps do not have
a predetermined outcome. It is up to us to model the problem so that we can identify (or design
ourselves) a numerical solver that can efficiently solve the problem. Your modeling skills will get better
with practice, and this process is partially based on trial-and-error.

Example 1.1 (Choice of optimization variables). This examples illustrates that there is no single correct
answer to modeling a problem. For instance, what we choose to be our optimization variables is a modeling
decision. Consider, for instance, an investor, who seeks to distribute a certain amount of money𝑀 between
a bank account with fixed interest and a stock investment with uncertain future stock prices. The investor’s
objective may be to maximize the expected amount of their wealth at a certain time in the future.

The investor may choose optimization variables

𝑥1 amount of money invested in the bank account,

𝑥2 amount of money invested in the stock.

We are not specifying the problem any further here, but we mention that it is likely going to contain the
constraints 𝑥1 ≥ 0, 𝑥2 ≥ 0 and 𝑥1 + 𝑥2 = 𝑀 .

Alternatively, instead of determining how much money to put in either investment, the investor may
describe their optimization variable using a single decision, namely what fraction (“percentage”) of the
money𝑀 is going to be invested in the bank account. That is, the investor may choose their optimization
variable as

𝑥1 fraction of𝑀 to be invested in the bank account,

which is subject to the constraint 0 ≤ 𝑥1 ≤ 1. Naturally, the remainder fraction 1 − 𝑥1 of𝑀 is going to be
invested in the stock.

We now discuss what it means to solve an optimization problem, i. e., to find and recognize minimiz-
ers.

Definition 1.2 (Basic concepts).
(𝑖) The set of points 𝑥 ∈ R𝑛 satisfying all the constraints, i. e.,

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq and ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

(1.2)

is termed the feasible set. Every 𝑥 ∈ 𝐹 is called a feasible point.

(𝑖𝑖) The inequality 𝑔𝑖 (𝑥) ≤ 0 is said to be active at the point 𝑥 in case of 𝑔𝑖 (𝑥) = 0. It is called inactive
in case 𝑔𝑖 (𝑥) < 0. It is called violated in case 𝑔𝑖 (𝑥) > 0.
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(𝑖𝑖𝑖) A point 𝑥∗ ∈ 𝐹 is a global minimizer or global solution of (1.1) if

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 .

(𝑖𝑣) A point 𝑥∗ ∈ 𝐹 is a local minimizer or local solution of (1.1) if there exists a (potentially small)
neighborhood of 𝑥∗1 𝑈 (𝑥∗) such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗).

While Definition 1.2 states what minimizers are, the definition is not very helpful when it comes to
checking whether a given point 𝑥∗ is indeed, say, a local minimizer. In order to verify this on the
grounds of the definition would require us to compare the value of the objective 𝑓 (𝑥∗) with the value
of the objective 𝑓 (𝑥) at an (uncountable!) number of nearby points 𝑥 ! This is clearly impractical.

Therefore, we need to resort to different ways of verifying that a certain point is a minimizer, and also of
excluding certain points from the list of candidate minimizers. To this end, we can use derivative-based
optimality conditions. Optimality conditions come in two flavors:

(1) A necessary optimality condition (NC) is a statement of the following form: “Suppose that
𝑥∗ is a local minimizer of problem (1.1). Then (NC) holds at 𝑥∗.”

Necessary optimality conditions can be used in the following ways:

(a) Finding points 𝑥∗ ∈ R𝑛 that satisfy (NC) means to compile a list of candidates for local
minimizers. Those can then by further examined by other means.

(b) A necessary optimality condition can also be read as:2 “Suppose that (NC) does not hold at
𝑥∗, then 𝑥∗ cannot be a local minimizer.” Consequently, necessary optimality conditions
can be used to exclude points from the search for local minimizers.

(2) A sufficient optimality condition (SC) is a statement of the following form: “Suppose that
(SC) holds at 𝑥∗. Then 𝑥∗ is a local minimizer.”

Sufficient optimality conditions thus allow us to verify candidates as local minimizers.

We will discuss appropriate forms of necessary and sufficient optimality conditions for the particular
type of problem in each of the following sections.

1Note that the definition is equivalent if we were to replace “neighborhood of 𝑥∗” by “ball around 𝑥∗”, i. e., 𝐵𝜀 (𝑥∗) = {𝑥 ∈
R𝑛 | ∥𝑥 − 𝑥∗∥2 < 𝜀}.

2This is called the contraposition of the original statement.
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§ 2 Unconstrained Optimization and Parameter Estimation

As the name suggests, unconstrained optimization is about minimizing an objective in the absence of
any equality or inequality constraints. In this case, our generic problem (1.1) reduces to

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (2.1)

For this problem, “derivative equals zero” is a necessary optimality condition. Points which satisfy
𝑓 ′(𝑥) = 0 are called stationary points.

Theorem 2.1 (Necessary optimality condition for unconstrained problems).
Suppose that 𝑥∗ is a local minimizer for (1.1). Then 𝑥∗ is a stationary point, i. e., 𝑓 ′(𝑥∗) = 0 holds.

Sufficient optimality conditions are usually based on second-order derivatives, and we do not state
them here. Instead, we proceed to sketch some algorithms. Indeed, algorithms usually find stationary
points, which may or may not be local minimizers. Nevertheless, we use the term “optimization
algorithms” and continue to speak of “minimizing the objective”.

§ 2.1 Algorithmic Sketches for Generic Unconstrained Problems

Optimization algorithms proceed in a sequential way and break down problem (1.1) into a sequence of
simpler problems. In doing so, they generate a sequence 𝑥 (𝑘 ) of iterates, which (under some conditions)
converges to a stationary point 𝑥∗.

The vast majority of algorithms for (1.1) proceeds as follows. At the current iterate 𝑥 (𝑘 ) , they form a
quadratic model of the objective. A quadratic model is a quadratic (i. e., second-order) polynomial
that shares some properties with the true objective in the vicinity of the current iterate 𝑥 (𝑘 ) . The
quadratic model at 𝑥 (𝑘 ) is of the form (see Figure 2.1 for an illustration in 1D)

𝑞 (𝑘 ) (𝑥) B 𝑓 (𝑥 (𝑘 ) )︸  ︷︷  ︸
constant term

+

linear term︷                 ︸︸                 ︷
𝑓 ′(𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) ) + 1

2 (𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) )︸                              ︷︷                              ︸
quadratic term

. (2.2)

The matrix 𝐻 (𝑘 ) is called the model Hessian and it is designed to be symmetric.

At 𝑥 = 𝑥 (𝑘 ) , the model 𝑞 (𝑘 ) shares its function value and its derivative with the true objective 𝑓 .
(Quiz 2.1: Can you show this?)

Algorithms proceed by minimizing the current quadratic model 𝑞 (𝑘 ) , or at least they look for a
stationary point of the model:

[𝑞 (𝑘 ) ]′(𝑥) = 𝑓 ′(𝑥 (𝑘 ) ) + (𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) !
= 0.
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𝑓 (𝑥)

𝑥

𝑞 (𝑘 ) (𝑥) B 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) )
+ 1

2 (𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) )

𝑞 (𝑘 ) (𝑥) B 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) )
+ 1

2 (𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) )

Figure 2.1: A function 𝑓 B R→ R and two possible quadratic models 𝑞 (𝑘 ) about the point 𝑥 (𝑘 ) (black
dot). The red model is the second-order Taylor polynomial of 𝑓 at 𝑥 (𝑘 ) . In other words,
the red model uses 𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) ). The blue model instead uses an “incorrect” Hessian
𝐻 (𝑘 ) ≠ 𝑓 ′′(𝑥 (𝑘 ) ).

This amounts to solving the linear(!) system of equations

𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) ) = −∇𝑓 (𝑥 (𝑘 ) ) .

Usually this is written in the form
𝐻 (𝑘 )𝑑 = −∇𝑓 (𝑥 (𝑘 ) ) (2.3)

whose solution gives us an update direction 𝑑 in the space of optimization variables.

In practical algorithms, this direction is then scaled with a suitable step length 𝛼 (𝑘 ) > 0, which accounts
for the deviation of the quadratic model from the original objective and gives us the update

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑.

The step length 𝛼 (𝑘 ) has the purpose of making the step between consecutive iterates small when
the model does not agree well with the true objective. This is done in an effort to obtain robust
convergence properties regardless of the quality of the initial guess provided by the user. Since 𝛼 (𝑘 ) is
determined by a line search procedure, in which trial step sizes are proposed and evaluated until a
satisfactory one is found, one speaks of a line search algorithm. An alternative concept is to limit
the size of 𝑑 in the first place by constraining the norm ∥𝑑 ∥2 ≤ Δ(𝑘 ) when minimizing the model
(2.2). The solution of this problem is more complex than solving a linear system (2.3). This leads to
trust-region algorithms, and Δ(𝑘 ) is the trust-region radius.

Depending on the choice of the model Hessians 𝐻 (𝑘 ) implemented in an algorithm, we refer to it by
different names:3
3Combined with the choice above, one then obtains a line-search quasi-Newton method, or a trust-region Newton algorithm,
for instance. The combination trust-region gradient method is, however, uncommon.
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gradient method (steepest descent) 𝐻 (𝑘 ) = Id (identity matrix) linear convergence
preconditioned gradient method 𝐻 (𝑘 ) = 𝑀 linear convergence
quasi-Newton method 𝐻 (𝑘 ) varies often superlinear convergence
Newton method 𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) ) superlinear convergence

Gradient methods are simple in the sense that the linear system (2.3) solved in each iteration has a
constant coefficient matrix, which can be exploited. Gradient methods, however, typically exhibit slow
convergence. On the other hand, Newton methods convergence faster once they are near a minimizer;
however, the evaluation of the objective’s second derivative matrix in every iteration is usually costly.
In practice, quasi-Newton methods are a good compromise, in which 𝐻 (𝑘 ) tries to capture some of the
properties of the objective’s second derivative without actually computing it.

We close this section by mentioning what functions a user has to implement in order to run an
algorithm for solving an unconstrained problem (2.1):

objective 𝑓 (𝑥)
derivative 𝑓 ′(𝑥) optional (finite difference fallback)

2nd derivative 𝑓 ′′(𝑥) or 𝑓 ′′(𝑥) 𝑑 optional, only for Newton methods

The evaluation of the first-order derivative 𝑓 ′(𝑥), although required by all algorithms, is usually
optional for the user. When it is not provided, the algorithm will fall back to an internal approximation
of 𝑓 ′(𝑥) by finite differences. While this may sound convenient, it may be very time consuming and
introduce inaccuracies. If possible, the user should provide first-order derivatives. To facilitate the
task, they may use algorithmic differentiation (AD) for this purpose. This is beyond the scope of
these notes.

Example 2.2 (Rosenbrock problem). The Rosenbrock problem is a classical test example in uncon-
strained optimization:

Minimize 𝑓 (𝑥) B (𝑎 − 𝑥)2 + 𝑏 (𝑦 − 𝑥2)2 where (𝑥, 𝑦) ∈ R × R

It has a global minimizer at (𝑥, 𝑦) = (𝑎, 𝑎2), with an optimal function value of 0. A typical choice of the
parameters is (𝑎, 𝑏) = (1, 100). A plot of the function can be found in Figure 2.2.

§ 2.2 Algorithmic Sketches for Unconstrained Least-Squares Problems

Many unconstrained optimization problems are in fact of the form

Minimize 𝑓 (𝑥) B
𝑀∑︁
𝑖=1

[𝑟𝑖 (𝑥)]2 = ∥𝑟 (𝑥)∥22 where 𝑥 ∈ R𝑛 . (2.4)
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Figure 2.2: Contour plot of the Rosenbrock “banana” function (Example 2.2) with parameters (𝑎, 𝑏) =
(1, 100), and its global minimizer.

These are called least-squares problems. The primary source of least-squares problems lies in
parameter estimation, also known as parameter identification,model calibration, curve fitting,
or data assimilation.

In parameter estimation one is given a model function𝑚 which describes a relation 𝜂 =𝑚(𝜉) between
independent variables (model input) 𝜉 ∈ R𝑟 and dependent variables 𝜂 ∈ R (model output). The model
in fact contains yet unknown parameters 𝑥 ∈ R𝑛 , i. e., we have a relation of the form

𝜂 =𝑚(𝑥 ; 𝜉) .

Each measurement pair (𝜉𝑖 , 𝜂𝑖) contributes a residual

𝑟𝑖 (𝑥) B 𝑚(𝑥 ; 𝜉𝑖)︸   ︷︷   ︸
model prediction

−
measurement︷︸︸︷
𝜂𝑖 , (2.5)

which describes the discrepancy between the value predicted by the model and the actual measure-
ment 𝜂𝑖 pertaining to the 𝑖-th input 𝜉𝑖 .

The least-squares problem (2.4) describes our desire to choose the parameters 𝑥 ∈ R𝑛 in such a way
that the model will fit the available measurement pairs (𝜉𝑖 , 𝜂𝑖) ∈ R𝑟 × R, 𝑖 = 1, . . . , 𝑀 , in the best
possible way, in the sense of least squares.

There are statistical reasons why — at least for measurements 𝜂𝑖 perturbed by additive random
measurement errors, which are uncorrelated and identically normally distributed — the solution of
the least-squares problem (2.1) yields the best estimate of the parameters. When, more generally, the
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measurement errors are still uncorrelated but may have non-identical variances 𝜎2𝑖 , we should consider
the weighted least-squares problem

Minimize 𝑓 (𝑥) B
𝑀∑︁
𝑖=1

1
𝜎2
𝑖

[𝑟𝑖 (𝑥)]2 = ∥𝑟 (𝑥)∥2Σ−1 where 𝑥 ∈ R𝑛, (2.6)

where Σ = diag(𝜎21 , . . . , 𝜎2𝑀 ) is the measurement covariance matrix. However, we do not specifically
consider the form (2.6) here. After all, (2.6) can be brought into the form (2.4) simply by scaling the
residuals by 1/𝜎𝑖 .

We could use any of the algorithmic ideas from § 2.1 to solve (2.4). However, it is usually more efficient
to use a different algorithm that exploits the particular structure of the objective in (2.4). In order to
understand this, we determine the first- and second-order derivatives of the objective from (2.4) using
the chain rule. We expect that the derivative of the residual function 𝑟 will appear, i. e., its Jacobian,
which we denote by 𝑟 ′ or by 𝐽 :

𝐽 (𝑥) B
[
𝜕

𝜕𝑥 𝑗
𝑟𝑖 (𝑥)

]
𝑖 𝑗

=


𝜕
𝜕𝑥1
𝑟 (𝑥) · · · 𝜕

𝜕𝑥𝑛
𝑟 (𝑥)


=


∇𝑟1(𝑥)ᵀ

...

∇𝑟𝑚 (𝑥)ᵀ


∈ R𝑀×𝑛 . (2.7)

For cosmetic reasons it is practical to divide the objective in (2.4) by 2. This does, of course, not
influence where the minimizers lie.

𝑓 (𝑥) = 1
2 ∥𝑟 (𝑥)∥

2
2 =

1
2𝑟 (𝑥)

ᵀ𝑟 (𝑥) objective (2.8a)

∇𝑓 (𝑥) = 𝐽 (𝑥)ᵀ𝑟 (𝑥) =
𝑀∑︁
𝑖=1

𝑟𝑖 (𝑥) ∇𝑟𝑖 (𝑥) first-order derivative (2.8b)

𝑓 ′′(𝑥) = 𝐽 (𝑥)ᵀ 𝐽 (𝑥) +
𝑀∑︁
𝑖=1

𝑟𝑖 (𝑥) 𝑟 ′′𝑖 (𝑥) second-order derivative. (2.8c)

With the help of this data one could set up a quadratic model of the objective 𝑓 at the current iterate
𝑥 (𝑘 ) , determine a search direction 𝑑 (𝑘 ) by minimizing it, then find a step length 𝛼 (𝑘 ) , take the step etc.
The additional knowledge, however, that we are dealing with a least-squares problem can be exploited
even better algorithmically. We describe this using the popular Levenberg-Marquardt method4 as
an example.

The Levenberg-Marquardt method sets up a certain quadratic model about the point 𝑥 (𝑘 ) :

𝑞 (𝑘 )LM (𝑑) B𝑓 (𝑥 (𝑘 ) ) + ∇𝑓 (𝑥 (𝑘 ) )ᵀ𝑑 + 1
2𝑑

ᵀ𝐻 (𝑘 )
LM 𝑑

=
1
2𝑟 (𝑥

(𝑘 ) )ᵀ𝑟 (𝑥 (𝑘 ) ) + 𝑟 (𝑥 (𝑘 ) )ᵀ 𝐽 (𝑥 (𝑘 ) ) 𝑑 + 1
2𝑑

ᵀ𝐻 (𝑘 )
LM 𝑑 by (2.8). (2.9)

The Levenberg-Marquardt method uses

𝐻 (𝑘 )
LM B 𝐽 (𝑥 (𝑘 ) )ᵀ 𝐽 (𝑥 (𝑘 ) ) + 𝜆 (𝑘 ) Id (2.10)

as the model Hessian. Here 𝜆 (𝑘 ) > 0 is a positive number. This has the following advantages:
4proposed by Levenberg (1944), rediscovered by Marquardt (1963)
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(𝑖) One uses the “good” first part 𝐽 (𝑥)ᵀ 𝐽 (𝑥) of the true Hessian (2.8c). This part is at least positive
semidefinite and it can be computed without further effort since we need 𝐽 (𝑥) anyway for the
first-order derivative ∇𝑓 (𝑥).

(𝑖𝑖) The “bad” part
∑𝑀

𝑖=1 𝑟𝑖 (𝑥) 𝑟 ′′𝑖 (𝑥) of the Hessian (2.8c) is omitted. Since this part depends on the
second-order derivatives 𝑟 ′′𝑖 (𝑥), it is expensive to evaluate, and it can potentially destroy the
positive definiteness. Moreover we hope that the residuals 𝑟𝑖 (𝑥∗) at the solution 𝑥∗ will be
small (near zero), i. e., we hope that we will have a good fit, and this part of the Hessian can be
disregarded.

(𝑖𝑖𝑖) Instead one adds an auxiliary term 𝜆 (𝑘 ) Id. In view of 𝜆 (𝑘 ) > 0, positive definiteness of the model
Hessian 𝐻 (𝑘 )

LM is ensured, which implies that the linear problems that need to be solved in the
algorithms substeps are uniquely solvable.

As with the methods of § 2.1, one is interested in the minimizer of the quadratic model (2.9) in the 𝑘-th
iteration. This minimizer is unique and it can be calculated by solving the following linear system of
equations, compare (2.3),

𝐻 (𝑘 )
LM 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) . (2.11)

In more explicit terms, see (2.10) and (2.8b), we can write[
𝐽 (𝑥 (𝑘 ) )ᵀ 𝐽 (𝑥 (𝑘 ) ) + 𝜆 (𝑘 ) Id] 𝑑 (𝑘 ) = −𝐽 (𝑥 (𝑘 ) )ᵀ𝑟 (𝑥 (𝑘 ) ) . (2.12)

The size of the Levenberg-Marquardt parameter 𝜆 (𝑘 ) implicitly determines the length of the step 𝑑 .
(Quiz 2.2: What happens in the extreme cases 𝜆 (𝑘 ) → 0 and 𝜆 (𝑘 ) → ∞, respectively?) 𝜆 (𝑘 ) itself is
controlled depending on how well the model (2.9) was able to predict the actual decrease in the values
of the objective (2.4).

We mention what functions a user has to implement in order to run a dedicated least-squares algorithm
for solving an problem of type (2.4):

residual 𝑟 (𝑥)
Jacobian 𝐽 (𝑥) optional (finite difference fallback)

Often times, the user has a choice (through different interfaces to the algorithm) to specify the model
function𝑚 and the set of measurement pairs (𝜉𝑖 , 𝜂𝑖) ∈ R𝑟 × R, 𝑖 = 1, . . . , 𝑀 , and have the method itself
evaluate the residual function with components (2.5) and Jacobian

𝐽 (𝑥) = 𝑟 ′(𝑥) =


𝜕
𝜕𝑥1
𝑚(𝑥 ; 𝜉1) · · · 𝜕

𝜕𝑥𝑛
𝑚(𝑥 ; 𝜉1)

...
...

𝜕
𝜕𝑥1
𝑚(𝑥 ; 𝜉𝑀 ) · · · 𝜕

𝜕𝑥𝑛
𝑚(𝑥 ; 𝜉𝑀 )

 =


∇𝑚(𝑥 ; 𝜉1)ᵀ
...

∇𝑚(𝑥 ; 𝜉𝑀 )ᵀ

 .
In this case, the user provides
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model 𝑚(𝑥 ; 𝜉)
model gradient ∇𝑚(𝑥 ; 𝜉) optional (finite difference fallback)

and the set of measurement pairs (𝜉𝑖 , 𝜂𝑖). Again, when derivatives are not provided, most algorithms
will fall back to finite differencing.

Example 2.3 (Parameter estimation). The position (𝑥, 𝑦) of an airplane should be determined by radio
bearing. To this end, the directions towards several radio beacons are measured from the airplane. The
positions (𝑋𝑖 , 𝑌𝑖) of the beacons are known and the directions are measured as angles 𝛼𝑖 to the 𝑥-axis:

beacon 𝑖 beacon’s position (𝑋𝑖 , 𝑌𝑖) angle 𝛼𝑖

1 (8, 6) 38◦
2 (−3,−3) 220◦
3 (1, 0) 222◦
4 (8,−3) 300◦

The aim is to find the position (𝑥, 𝑦) of the airplane for which the discrepancies between the predicted and
measured angles are as small as possible in the least squares sense.

In this example, we have𝑀 = 4 individual measurements. We require a model which maps the independent
variable 𝜉 = (𝑋,𝑌 ) ∈ R2 to the dependent variable (𝜂 = 𝛼 ∈ R), as a function of the unknown airplane
position (𝑥, 𝑦). A model which achieves this is given by

𝑚((𝑥, 𝑦)︸︷︷︸
unknown parameter

;

independent variable︷︸︸︷
(𝑋,𝑌 )) = 𝑎𝑡𝑎𝑛2(𝑋 − 𝑥,𝑌 − 𝑦) · 180

◦

𝜋
,

which returns the angle of the vector
(
𝑋−𝑥
𝑌−𝑦

)
against the 𝑥-axis in degrees. In fact, since 𝑎𝑡𝑎𝑛2 returns

angles in the interval (−𝜋, 𝜋], while our measurements are in 0◦ to 360◦, we have to normalize 𝑎𝑡𝑎𝑛2’s
output to [0, 2𝜋) beforehand; see the listing in § 5.3 for details.

The solution obtained with the code from § 5.3 is shown in Figure 2.4.
End of Class 1
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airplane

beacon 1

beacon 2

beacon 3

beacon 4

𝛼1

𝛼2
𝛼3

𝛼4

Figure 2.3: Illustration of the airplane position parameter estimation problem from Example 2.3.
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Figure 2.4: Solution of the airplane position parameter estimation problem from Example 2.3.
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§ 3 Convex Optimization

In this section we consider another class of optimization problems:

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (3.1)

These problems feature a convex objective 𝑓 : R𝑛 → R ∪ {∞}. Due to the possibility of 𝑓 taking the
value ∞, we can implicitly model constraints, since points with a function value 𝑓 (𝑥) = ∞ are not
considered to be minimizers, since we exclude the pathological case 𝑓 ≡ ∞.

Definition 3.1 (Convex function). Suppose that 𝑓 : R𝑛 → R ∪ {∞}.

(𝑖) 𝑓 is said to be convex if

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (3.2)

holds for all 𝑥, 𝑦 ∈ R𝑛 and all 𝛼 ∈ [0, 1].

(𝑖𝑖) 𝑓 is said to be strictly convex if

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) < 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (3.3)

holds for all 𝑥 ≠ 𝑦 ∈ R𝑛 and all 𝛼 ∈ (0, 1).

𝛼 𝑓 (𝑥) +
(1 − 𝛼) 𝑓 (

𝑦)

𝑥 𝑦 𝑥

Figure 3.1: Example of a (strictly) convex function on R.

The benefit of the objective being convex is clarified by the following theorem.

Theorem 3.2 (Fundamental theorem of convex optimization).
(a) Every local minimizer of (3.1) is already a global minimizer.

(b) The set of global minimizers of (3.1) is a convex set.5

(c) When 𝑓 is strictly convex, then (3.1) has at most one solution.
5A set 𝐶 ⊆ R𝑛 is said to be convex if the line joining any points in 𝐶 remains in 𝐶 , i. e.: for all 𝑥, 𝑦 ∈ 𝐶 we have
𝛼 𝑥 + (1 − 𝛼) 𝑦 ∈ 𝐶 for all 𝛼 ∈ [0, 1].
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Consequently, in convex optimization one does not have to distinguish local from global minimizers.

We consider in this section optimization problems of a form more particular than the generic convex
problem (3.1). Indeed, we consider composite problems of the form

Minimize 𝑓 (𝑥) + 𝑔(𝐴𝑥) where 𝑥 ∈ R𝑛 . (3.4)

In (3.4), 𝑓 : R𝑛 → R ∪ {∞} and 𝑔 : R𝑚 → R ∪ {∞} are both convex functions, and 𝐴 ∈ R𝑚 → R𝑛 is a
matrix. Problems of type (3.4) are encountered in many practical problems, and they allow specialized
algorithms of convex optimization to be used, compared to the generic convex problem (3.1).

Example 3.3 (Image denoising). A classical problem in image denoising is as follows. Suppose we are
given a noisy image (gray-scale for simplicity), which is represented as a matrix 𝑍 ∈ R𝑛1×𝑛2 . The image
height (number of pixels in vertical direction) is 𝑛1 while 𝑛2 is the width. We wish to remove the noise
while retaining the image’s content. In particular, we wish to preserve edges, i. e., sharp variations of the
brightness values between neighboring pixels.

A classical way to approach this task (Rudin, Osher, Fatemi, 1992) is to formulate it as an optimization
problem:

Minimize
1
2

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

(
𝑋𝑖, 𝑗 − 𝑍𝑖, 𝑗

)2︸         ︷︷         ︸
fidelity term

+ 𝛽
𝑛1∑︁
𝑖=1

𝑛2−1∑︁
𝑗=1

|𝑋𝑖, 𝑗 − 𝑋𝑖, 𝑗+1 |︸          ︷︷          ︸
horizontal jump

+ 𝛽
𝑛1−1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

|𝑋𝑖+1, 𝑗 − 𝑋𝑖, 𝑗 |︸          ︷︷          ︸
vertical jump

where 𝑋 ∈ R𝑛1×𝑛2 .

(3.5)

The first term ensures that the resulting image 𝑋 does not deviate too much from the noisy image 𝑍
observed. The remaining terms penalize differences in brightness between all pairs of neighboring pixels,
both in horizontal and in vertical directions. The parameter 𝛽 > 0 balances both objectives.

Problem (3.5) can be written in the form (3.4) when we vectorize6 the matrix-valued optimization variable
to become 𝑥 = vec(𝑋 ) ∈ R𝑛1𝑛2 . Likewise, we vectorize the observed image: 𝑧 = vec(𝑍 ). The first term
in (3.5) then simply becomes 1

2 ∥𝑥 − 𝑧∥22. To account for the remaining terms, we require a matrix 𝐴
which converts the pixel values 𝑥 to the vector of horizontal differences, followed by the vector of vertical
differences. Such a matrix𝐴 is of dimension [𝑛1 (𝑛2−1) +𝑛2 (𝑛1−1)] × [𝑛1 𝑛2]. Each row contains precisely
one entry +1 and one entry −1, all remaining entries are zero; see Figure 3.2. Finally, 𝑔(𝑦) = 𝛽 ∥𝑦 ∥1 holds,
i. e., 𝑔(𝑦) is 𝛽 times the sum of the absolute values of all entries of the vector 𝑦 .

The objective in Example 3.3 is convex since

𝑓 (𝑥) B 1
2 ∥𝑥 − 𝑧∥22 and 𝑔(𝐴𝑥) B ∥𝐴𝑥 ∥1 (3.6)

are both convex, and since sums and non-negative multiples of convex functions are again convex.

The algorithm we are considering exploits the additive and composite structure of (3.5). In order to
derive it, we require the notion of the Fenchel conjugate of a function.
6Vectorization of a matrix simply means to stack the columns of the matrix on top of each other to form a long vector with
all entries of the matrix.
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𝐴ᵀ =



1 2 3 4 5 6 7 8 9 10 11 12

−1 · · · · · −1 · · · · · 1

· · −1 · · · 1 −1 · · · · 2

· · · · −1 · · 1 · · · · 3

1 −1 · · · · · · −1 · · · 4

· · 1 −1 · · · · 1 −1 · · 5

· · · · 1 −1 · · · 1 · · 6
· 1 · · · · · · · · −1 · 7

· · · 1 · · · · · · 1 −1 8
· · · · · 1 · · · · · 1 9


Figure 3.2: Illustration of the construction of the matrix𝐴 for an image denoising problem (Example 3.3).

Its transpose 𝐴ᵀ is the incidence matrix of the directed graph obtained from connecting
neighboring pixels. For readibility, zeros are written as ·.

Definition 3.4 (Fenchel conjugate). Suppose that 𝑓 : R𝑛 → R ∪ {∞} is a function. Then the Fenchel
conjugate of 𝑓 is 𝑓 ∗ : R𝑛 → R ∪ {±∞}, defined by

𝑓 ∗(𝜉) B sup
𝑥∈R𝑛

𝜉ᵀ𝑥 − 𝑓 (𝑥). (3.7)

The Fenchel conjugate 𝑓 ∗ of any function 𝑓 is always convex. Moreover, when 𝑓 itself is convex
and lower semicontinuous7, then 𝑓 ∗ contains enough information to recover 𝑓 , in the sense that the
biconjugate function 𝑓 ∗∗ equals 𝑓 .

Without going into any details here, one can show the following theorem.

Theorem 3.5 (Characterization of solutions to (3.4)).
A point 𝑥∗ ∈ R𝑛 is a (global) minimizer for (3.4) if and only if there exists 𝑝∗ ∈ R𝑚 such that, for any
𝜎, 𝜏 ≠ 0,

𝑥∗ solves Minimize
1
2 ∥𝑦 − (𝑥∗ − 𝜏 𝐴ᵀ𝑝∗)∥22 + 𝜏 𝑓 (𝑦) where 𝑦 ∈ R𝑛, (3.8a)

and 𝑝∗ solves Minimize
1
2 ∥𝑞 − (𝑝∗ + 𝜎 𝐴𝑥∗)∥22 + 𝜎 𝑔∗(𝑞) where 𝑞 ∈ R𝑚 . (3.8b)

The above theorem provides the idea for an algorithm. As the unknown solutions 𝑥∗ and 𝑝∗ appear in
the respective objectives for both problems, we can convert (3.8) into a fixed-point algorithm.

Algorithm 3.6 (Primal-dual extragradient algorithm (Chambolle, Pock, 2011)).
1: Set 𝑥 (𝑘+1) to the solution of the following problem:

Minimize
1
2 ∥𝑦 − (𝑥 (𝑘 ) − 𝜏 𝐴ᵀ𝑝 (𝑘 ) )∥22 + 𝜏 𝑓 (𝑦) where 𝑦 ∈ R𝑛 (3.9)

7A function 𝑓 : R𝑛 → R ∪ {∞} is lower semicontinuous if 𝑓 (𝑥0) ≤ lim inf𝑥→𝑥0 𝑓 (𝑥) holds for all 𝑥0 ∈ R𝑛 .
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Figure 3.3: Illustration of the construction of the Fenchel conjugate function 𝑓 ∗ : R ∪ {±∞} (right) of
the (convex) function 𝑓 (𝑥) = 𝑥2 + exp(−𝑥3) (left).

2: Set 𝑝 (𝑘+1) to the solution of the following problem:

Minimize
1
2 ∥𝑞 − (𝑝 (𝑘 ) + 𝜎 𝐴𝑥 (𝑘+1) )∥22 + 𝜎 𝑔∗(𝑞) where 𝑞 ∈ R𝑚 (3.10)

3: Set 𝑝 (𝑘+1) B 2𝑝 (𝑘+1) − 𝑝 (𝑘 ) .

The advantage of such an algorithm is that the solution to the original problem (3.4), involving both 𝑓
and 𝑔, is broken down into the repeated solution to two different problems (3.9) and (3.10). Problem
(3.9) requires the minimization of 𝑓 plus a quadratic distance term, while problem (3.10) requires the
minimization of the conjugate 𝑔∗ plus a quadratic distance term. The solutions to these problems are
also known as proximity (prox) operators. More precisely, one defines prox𝜏 𝑓 (𝑥) as the unique
solution of the problem “Minimize 1

2 ∥𝑦 − 𝑥 ∥22 + 𝜏 𝑓 (𝑦).”

For a number of relevant problems, the solutions to problems (3.9) and (3.10) can be explicitly calculated.
We consider this now for 𝑓 and 𝑔∗ from the image denoising Example 3.3. We begin with prox𝜏 𝑓 (𝑥),
i. e., the unique solution of the problem

Minimize 1
2 ∥𝑦 − 𝑥 ∥22 + 𝜏 𝑓 (𝑦) =

1
2 ∥𝑦 − 𝑥 ∥22 +

𝜏

2 ∥𝑦 − 𝑧∥22 where 𝑦 ∈ R𝑛1𝑛2 .

A short calculation shows (Quiz 3.1: Can you fill in the details?)

prox𝜏 𝑓 (𝑥) =
𝑥 + 𝜏 𝑧
1 + 𝜏 , (3.11)

i. e., prox𝜏 𝑓 (𝑥) is simply a weighted average between 𝑥 and 𝑧. On the other hand, we first need to
evaluate

𝑔∗(𝜉) = sup
𝑝∈R𝑚

𝜉ᵀ𝑝 − 𝑔(𝑝) = sup
𝑝∈R𝑚

𝜉ᵀ𝑝 − 𝛽 ∥𝑝∥1
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where𝑚 = 𝑛1 (𝑛2 − 1) + 𝑛2 (𝑛1 − 1) is the number of pairs of neighboring pixels (edges in Figure 3.2).
We calculate (Quiz 3.2: Can you fill in the details?)8

𝑔∗(𝜉) =
{
0 if ∥𝜉 ∥∞ ≤ 𝛽

∞ if ∥𝜉 ∥∞ > 𝛽.

Therefore we have that prox𝜎 𝑔∗ (𝑝) is the unique solution of the problem

Minimize 1
2 ∥𝑞 − 𝑝∥

2
2 + 𝜎 𝑔∗(𝑞) where 𝑞 ∈ R𝑚,

which is to say that prox𝜎 𝑔∗ (𝑝) is the unique solution of

Minimize 1
2 ∥𝑞 − 𝑝∥

2
2 where 𝑞 ∈ R𝑚

subject to ∥𝑞∥∞ ≤ 𝛽.

A short calculation shows (Quiz 3.3: Can you fill in the details?)

[prox𝜎 𝑔∗ (𝑝)]𝑖 =
𝛽 𝑝𝑖

max{𝛽, |𝑝𝑖 |} = proj[−𝛽,𝛽 ] (𝑝𝑖), (3.12)

which turns out to be independent of 𝜎 . This formula means that the values of 𝑝 are simply clipped
elementwise to lie inside [−𝛽, 𝛽].

It can be shown9 that Algorithm 3.6 converges to a solution of (3.4) as long as 𝜎, 𝜏 are positive numbers
satisfying 𝜎 𝜏 ∥𝐴∥2 < 1, where ∥𝐴∥ is the largest singular value of 𝐴.

We close this section by mentioning what functions a user has to implement in order to run the
Chambolle-Pock Algorithm 3.6 for solving (3.4):

proximity operator of 𝜏 𝑓 prox𝜏 𝑓 (𝑥)
proximity operator of 𝜎 𝑔∗ prox𝜎 𝑔∗ (𝑝)
matrix-vector product with 𝐴 𝐴𝑥

matrix-vector product with 𝐴ᵀ 𝐴ᵀ𝑝 redundant if 𝐴 is available as a matrix

Figure 3.4 shows the result of an image denoising optimization run.
End of Class 2

8It can be shown in general that the convex conjugate of a norm is the indicator function of the unit ball w.r.t. the dual
norm.

9Chambolle, Pock, 2011; Clason, 2017
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Figure 3.4: Image denoising model problem (Example 3.3.) Left: original image (dimensions 𝑛1 = 𝑛2 =
256). Middle: image with noise. Right: denoising result obtained using 200 iterations of the
Chambolle-Pock Algorithm 3.6 with 𝜎 = 1 and 𝜏 = 1/10 and weighting parameter 𝛽 = 0.08.
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§ 4 Constrained Optimization

We recall from § 1 that we are considering constrained optimization problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛
subject to 𝑔𝑖 (𝑥) ≤ 0 with 𝑖 = 1, . . . , 𝑛ineq

and ℎ 𝑗 (𝑥) = 0 with 𝑗 = 1, . . . , 𝑛eq.

 (4.1)

These problems are known as nonlinear optimization problems or nonlinear programming
problems (NLP). We also recall the notion of the feasible set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq and ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

(4.2)

associated with (4.1).

Example 4.1 (Production example; slightly modified from John E. Beasley’s OR notes10).
A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced
requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each
unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing
time on machine B. At the start of the current week there are 30 units of X and 90 units of Y in stock.
Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be
35 hours. The demand for X in the current week is forecast to be 70 units and for Y is forecast to be 95 units.
Company policy is to maximize the combined sum of the units of X and the units of Y in stock at the end
of the week.

Formulate this as an optimization problem. What kind of problem is it? What type of solver would you
use to solve it?

Note: Spoiler alert: The solution of Example 4.1 is given in § 5.

Example 4.2 (Formulating non-smooth problems as smooth ones). Try to formulate the following
optmization problems in the form (1.1) with smooth objective and smooth constraints.

Minimize − 𝑥21 + 𝑥2
subject to max{𝑥1 + 𝑥2, 2𝑥1 − 𝑥2} ≤ 3

}
(4.3)

Minimize − 𝑥21 + 𝑥2
subject to min{𝑥1 + 𝑥2, 2𝑥1 − 𝑥2} ≤ 3

}
(4.4)

Minimize max{−𝑥21 + 𝑥2, 𝑥21 + 2𝑥2}
subject to 𝑥1 + 𝑥2 ≤ 3

}
(4.5)

Minimize |−𝑥21 + 𝑥2 | + |𝑥1 + 𝑥22 |
subject to 𝑥1 + 𝑥2 ≤ 3

}
(4.6)

10https://people.brunel.ac.uk/∼mastjjb/jeb/or/morelp.html
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We will now look a little bit into the theory for problem (1.1) since it also tells us something about
choices we may be facing while modeling the problem.

One can easily see by example (Quiz 4.1: Can you give an example?) that the well-known condition
∇𝑓 (𝑥) = 0 is no longer a necessary condition for local optimality in case of a constrained problem. It
is one of the main conceptual difficulties in constrained optimization to come up with conditions that
replace ∇𝑓 (𝑥) = 0.

The main idea is as follows. Consider a local minimizer 𝑥∗ and a sequence 𝑥 (𝑘 ) of feasible points
approaching it. The elements of the sequence will eventually (i. e., for 𝑘 large enough) all remain in
the neighborhood𝑈 (𝑥∗) of local optimality. Consequently,

𝑓 (𝑥∗) ≤ 𝑓 (𝑥 (𝑘 ) )
holds for all 𝑘 sufficiently large. Therefore, we have

0 ≤ 𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥∗) . (4.7)

By Taylor’s theorem11, for any 𝑘 ∈ N there exist a number 𝜉 (𝑘 ) ∈ (0, 1) such that

𝑓 (𝑥 (𝑘 ) ) = 𝑓 (𝑥∗) + ∇𝑓 (𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗))ᵀ(𝑥 (𝑘 ) − 𝑥∗)
holds. Plugging this into the inequality (4.7), we obtain

0 ≤ ∇𝑓 (𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗))ᵀ(𝑥 (𝑘 ) − 𝑥∗) (4.8)

for sufficiently large 𝑘 ∈ N. Notice that since 𝑥 (𝑘 ) → 𝑥∗ and since 𝜉 (𝑘 ) is bounded, we must have

𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗) → 𝑥∗

and therefore
∇𝑓 (𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗)) → ∇𝑓 (𝑥∗) .

However, passing to the limit in (4.8) only yields the meaningless 0 ≤ 0 so we must do something
different.

Let us take another sequence 𝑡 (𝑘 ) which converges to zero from above: 𝑡 (𝑘 ) ↘ 0, and let us restrict
our attention to sequences 𝑥 (𝑘 ) such that the limit

𝑑 B lim
𝑘→∞

𝑥 (𝑘 ) − 𝑥∗
𝑡 (𝑘 )

exists. Dividing (4.8) by 𝑡 (𝑘 ) gives

0 ≤ ∇𝑓 (𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗))ᵀ
(
𝑥 (𝑘 ) − 𝑥∗
𝑡 (𝑘 )

)
and passing to the limit now yields the informative statement

0 ≤ ∇𝑓 (𝑥∗)ᵀ𝑑
for all directions 𝑑 ∈ R𝑛 constructed as above. We refer to those as tangent directions or tangent
vectors.
11This requires that the objective 𝑓 is a continuously differentiable (𝐶1) function.
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Definition 4.3 (Tangent vectors, tangent cone). A vector 𝑑 ∈ R𝑛 is said to be a tangent direction or
tangent vector to the (feasible) set 𝐹 at the point 𝑥∗ ∈ 𝐹 if there exist sequences 𝑥 (𝑘 ) and 𝑡 (𝑘 ) such that
𝑥 (𝑘 ) → 𝑥∗ and 𝑡 (𝑘 ) ↘ 0 such that

𝑑 = lim
𝑘→∞

𝑥 (𝑘 ) − 𝑥∗
𝑡 (𝑘 )

holds. The set of all tangent vectors to 𝐹 at 𝑥∗ is said to be the tangent cone12 to 𝐹 at 𝑥∗ and we denote it
by T𝐹 (𝑥∗).

Above we have proved the following

Theorem 4.4 (First-order necessary optimality conditions).
Suppose that 𝑥∗ is a local minimizer of an optimization problem with feasible set 𝐹 . Then

∇𝑓 (𝑥∗)ᵀ𝑑 ≥ 0 for all 𝑑 ∈ T𝐹 (𝑥∗) . (4.9)

The difficulty with this theorem is that the tangent cone T𝐹 (𝑥∗) is generally hard to characterize
and thus impossible to use in an optimization algorithm. Notice also that T𝐹 (𝑥∗) doesn’t even use
the description of the feasible set 𝐹 (4.2) in terms of the inequality constraints 𝑔𝑖 or the equality
constraints ℎ 𝑗 .

We therefore introduce another cone as a candidate to replace T𝐹 (𝑥∗).

Definition 4.5 (Linearized feasible vector, linearizing cone). A vector 𝑑 ∈ R𝑛 is said to be a linearized
feasible direction to the (feasible) set 𝐹 described by (1.2) at the point 𝑥∗ ∈ 𝐹 if it satisfies the following
conditions:

∇𝑔𝑖 (𝑥∗)ᵀ𝑑 ≤ 0 for all active indices 𝑖 = 1, . . . ,𝑚, (4.10a)
∇ℎ 𝑗 (𝑥∗)ᵀ𝑑 = 0 for all 𝑗 = 1, . . . , 𝑝. (4.10b)

The set of all linearized feasible directions to 𝐹 at 𝑥∗ is said to be the linearizing cone to 𝐹 at 𝑥∗ and we
denote it by T lin

𝐹
(𝑥∗).

Recall that the active indices at 𝑥∗ are those satisfying 𝑔𝑖 (𝑥∗) = 0. Therefore, inequalities that are
inactive at 𝑥∗ do not play a role in the definition.

Remark 4.6 (Tangent and linearizing cones). The tangent cone T𝐹 (𝑥∗) can be viewed as a geometric
approximation to the feasible set near the point 𝑥∗. By contrast, the linearizing cone T lin

𝐹
(𝑥∗) is an attempt

to locally describe the feasible set in algebraic terms, by means of equalities and inequalities.

12In mathematics, a cone in R𝑛 is any set 𝐾 ⊆ R𝑛 such that 𝑥 ∈ 𝐾 implies 𝛼 𝑥 ∈ 𝐾 for all 𝛼 > 0. In other words, a point 𝑥 in
the cone entails that the entire ray from the origin through 𝑥 belongs to the cone as well.
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One can show (although we do not do it here) that T𝐹 (𝑥∗) ⊆ T lin
𝐹

(𝑥∗) holds at any feasible point
𝑥∗. Therefore, we cannot expect that Theorem 4.4 continues to hold if 𝑑 ∈ T𝐹 (𝑥∗) were replaced by
𝑑 ∈ T lin

𝐹
(𝑥∗). In order for that to be possible, we require an extra condition that ensures that T𝐹 (𝑥∗) =

T lin
𝐹

(𝑥∗). Such a condition guarantees the agreement of the geometric and algebraic descriptions and
it is called a constraint qualification.

There are various types of constraint qualifications, and we consider only the most simple one.

Definition 4.7 (LICQ). Suppose that the (feasible) set 𝐹 is given by (1.2) and 𝑥∗ ∈ 𝐹 . We say that 𝑥∗

satisfies the linear independence constraint qualification (in short: LICQ) if the following set of
vectors is linearly independent: {∇𝑔𝑖 (𝑥)}𝑖∈A(𝑥∗ ) ∪

{∇ℎ 𝑗 (𝑥)}𝑝𝑗=1.
Here A(𝑥∗) denotes the set of active indices, i. e. A(𝑥∗) B {𝑖 = 1, . . . ,𝑚 | 𝑔𝑖 (𝑥∗) = 0}.

One can show that the LICQ at 𝑥∗ implies T𝐹 (𝑥∗) = T lin
𝐹

(𝑥∗). Provided that 𝑥∗ is also a local minimizer,
we thus get from Theorem 4.4 that

∇𝑓 (𝑥∗)ᵀ𝑑 ≥ 0 for all 𝑑 ∈ T lin
𝐹 (𝑥∗) . (4.11)

What could be the benefit of this, compared to (4.9)?

By a technique called the Farkas lemma we can show that (4.11) can be represented by a set (4.12) of
equalities and inequalities, which is amenable to numerical algorithms. We state this result in the
following lemma, without proof.

Lemma 4.8 ((4.11) as KKT conditions).
Suppose that the (feasible) set 𝐹 is given by (4.2) and 𝑥∗ ∈ 𝐹 . The following two statements are equivalent.

(a) (4.11) holds.

(b) There exist vectors 𝜇 ∈ R𝑚 and 𝜆 ∈ R𝑝 such that the following set of conditions hold:

∇𝑓 (𝑥∗) +
𝑚∑︁
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥∗) +
𝑝∑︁
𝑗=1
𝜆 𝑗∇ℎ 𝑗 (𝑥∗) = 0, (4.12a)

ℎ(𝑥∗) = 0, (4.12b)
𝜇 ≥ 0, 𝑔(𝑥∗) ≤ 0, 𝜇⊤𝑔(𝑥∗) = 0. (4.12c)

The system (4.12) is known as the Karush-Kuhn-Tucker conditions (in short: KKT conditions) of
problem (1.1). The vectors 𝜇 and 𝜆 are called Lagrange multipliers associated with the inequality and
equality constraints, respectively. A point 𝑥∗ which admits associated Lagrange multipliers 𝜇 and 𝜆 so
that (4.12) holds is called a KKT point.

Condition (4.12a) is often written in terms of the Lagrangian associated with problem (4.1), which is
defined as

L(𝑥, 𝜇, 𝜆) B 𝑓 (𝑥) + 𝜇ᵀ𝑔(𝑥) + 𝜆ᵀℎ(𝑥). (4.13)
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We can easily see that (4.12a) is nothing but ∇𝑥L(𝑥∗, 𝜆, 𝜇) = 0.

We summarize our findings in the following

Theorem 4.9 (First-order necessary optimality conditions under LICQ, compare Theorem 4.4).
Suppose that 𝑥∗ is a local minimizer of an optimization problem with feasible set 𝐹 . Moreover, suppose
that the LICQ holds at 𝑥∗. Then there exist Lagrange multipliers 𝜇 ∈ R𝑛ineq and 𝜆 ∈ R𝑛eq such that the
KKT conditions (4.12) hold. Moreover, 𝜇 and 𝜆 are unique.

The uniqueness of the multipliers follows from viewing (4.12a) as a linear system of equations for 𝜇 and
𝜆 and observing that the LICQ implies that the coefficient matrix has linearly independent columns.

A number of comments concerning (4.12) are in order.

(a) In the absence of inequality constraints (𝑛ineq = 0), (4.12) is a (generally nonlinear) system of
equations only.

(b) Condition (4.12c) — which comes in through inequality constraints — is called a complemen-
tarity system. Due to the signs of 𝜇 and 𝑔(𝑥∗), we can equivalently write 𝜇ᵀ𝑔(𝑥∗) = 0 compo-
nentwise as 𝜇𝑖𝑔𝑖 (𝑥∗) = 0 for all 𝑖 = 1, 𝑛ineq. Consequently, Lagrange multipliers pertaining to
inactive inequality constraints must be zero. On the other hand, a strictly positive multiplier
𝜇𝑖 > 0 indicates that the associated constraint must be active, i. e., 𝑔𝑖 (𝑥∗) = 0.

We can ask the question how “likely” it is for the LICQ to hold for an optimization problem at hand.
First of all, the very Definition 4.7 implies that for the LICQ to hold there cannot be too many active
inequality and equality constraints in the problem. As soon as the combined number of active inequality
and equality constraints at a point 𝑥∗ exceeds 𝑛 (the dimension of the optimization variable), the LICQ
cannot hold at 𝑥∗.

What can we learn from this? When we are modeling an optimization problem, the observation above
tells us not to unconsciously throw in additional constraints (which may not be needed) at will. The
following example gives us additional hints about things to avoid in modeling constraints:

Example 4.10 (LICQ holding or not holding?). Consider the following formulations of a (trivial)
optimization problem with variable 𝑥 ∈ R, and decide whether or not the LICQ holds at the (obvious)
solution:{

Minimize 𝑥2

subject to 𝑥 = 0

} {
Minimize 𝑥2

subject to 𝑥2 = 0

} {
Minimize 𝑥2

subject to 𝑥2 ≤ 0

} 
Minimize 𝑥2

subject to 𝑥 ≤ 0
and 𝑥 ≥ 0


The following example shows that the failure of constraint qualifications to hold can indeed be
problematic in practice:
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Example 4.11 (Minimizer where the KKT conditions fail to hold). Consider the problem

Minimize − 𝑥1 where 𝑥 ∈ R2
subject to 𝑥2 + 𝑥31 ≤ 0

and − 𝑥2 ≤ 0

Obviously, 𝑥∗ = (0, 0)ᵀ is the unique global minimizer, and there are no further local minimizers. Since
both constraints are active at 𝑥∗, the KKT conditions (4.12) boil down to(−1

0

)
+ 𝜇1

(
0
1

)
+ 𝜇2

(
0
−1

)
=

(
0
0

)
.

Clearly, it is impossible to satisfy them with any 𝜇1, 𝜇2 ≥ 0. Hence in this example, the minimizer 𝑥∗ fails
to be a KKT point.

The observation in the previous example is noteworthy since essentially all numerical algorithms for
the solution of smooth, constrained problems (4.1) are indeed looking for KKT points.

Example 4.12 (Rosenbrock’s post office problem). A simple test example for nonlinear programming is
Rosenbrock’s post office problem:

Minimize − 𝑥1 𝑥2 𝑥3 where 𝑥 ∈ R3
subject to 𝑥1 + 2𝑥2 + 2𝑥3 − 72 ≤ 0

and 𝑥1 + 2𝑥2 + 2𝑥3 ≥ 0
and 0 ≤ 𝑥𝑖 ≤ 42, 𝑖 = 1, 2, 3

This problem has only linear constraints but a nonlinear objective. The global minimizer is 𝑥∗ =

(24, 12, 12)ᵀ.

Aswe discussed for unconstrained problems in § 2, most optimization algorithms proceed in a sequential
way and break down problem (4.1) into a sequence of simpler problems. We will consider here only
the class of sequential quadratic programming (SQP) methods, where these simpler problems
are quadratic programming (QP) problems. A QP is a problem of type (4.2) whose objective is a
quadratic polynomial and all of whose constraints are linear. In an SQP method, the QP formed at
iterate 𝑥 (𝑘 ) is of the form

Minimize 𝑞 (𝑘 ) (𝑥) B L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) )︸                 ︷︷                 ︸
constant term

+

linear term︷                                 ︸︸                                 ︷
L𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) )

+ 1
2 (𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) )︸                              ︷︷                              ︸

quadratic term

where 𝑥 ∈ R𝑛

subject to 𝑔𝑖 (𝑥 (𝑘 ) ) + 𝑔′𝑖 (𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) ) ≤ 0 with 𝑖 = 1, . . . , 𝑛ineq
and ℎ 𝑗 (𝑥 (𝑘 ) ) + ℎ′𝑗 (𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) ) = 0 with 𝑗 = 1, . . . , 𝑛eq.



(4.14)
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In comparison to (2.2), the objective is now a quadratic model of the Lagrangian, rather than a
quadratic model of the objective. Depending on how the Hessians 𝐻 (𝑘 ) of the model are formed,
one can distinguish between quasi-Newton and Newton-type SQP methods. As was the case in § 2,
precautions need to be taken in order to achieve good convergence properties regardless of the quality
of the initial guess provided by the user. As before, there are line-search as well as trust-region but
also filter SQP methods around for this purpose.

Many other details need to be taken into account in order to obtain a robust SQP solver, including
potentially infeasible QP subproblems, update of the Lagrange multipliers, stopping criteria, deteri-
oration of superlinear convergence due to nonlinear constraints, failure of constraint qualifications
etc.

We close this section by mentioning what functions a user has to implement in order to run an SQP
for solving a constrained problem (4.1):

objective 𝑓 (𝑥)
derivative 𝑓 ′(𝑥) optional (finite difference fallback)

2nd derivative 𝑓 ′′(𝑥) or 𝑓 ′′(𝑥) 𝑑 optional, only for Newton SQP methods

constraints 𝑔(𝑥), ℎ(𝑥)
Jacobian 𝑔′(𝑥), ℎ′(𝑥) optional (finite difference fallback)

2nd derivative 𝑔′′𝑖 (𝑥), ℎ′′𝑗 (𝑥) or 𝑔′′𝑖 (𝑥) 𝑑 , ℎ′′𝑗 (𝑥) 𝑑 optional, only for Newton SQP methods

End of Class 3
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§ 5 Solutions

§ 5.1 Solution of Example 2.2 (Rosenbrock) using CasADi (Problem-Based)

CasADi provides algorithmic differentiation for user-defined functions. We demonstrate below the
description of the problem in a suitable form for CasADi’s nlpsol solver interface.

# This code solves an unconstrained optimization problem with the Rosenbrock

# function using CasADi's python bindings. For lack of a solver specializing

# in unconstrained optimization solver, the solver of choice is nlpsol with

# ipopt, see https://web.casadi.org/docs/#nonlinear-programming.

# Resolve the dependencies.

from casadi import *

import matplotlib.pyplot as plt
import numpy as np

# Create a 1-by-1 optimization variable (termed 'x') and another 1-by-1

# optimization variable (termed 'y').

# SX is the class in CasADi representing matrices composed of symbolic expressions.

# There is also MX for more complex expressions.

x = SX.sym('x', 1, 1)

y = SX.sym('y', 1, 1)

# Set the fixed problem parameters.

a = DM(1)

b = DM(100)

# Setup the objective.

f = (a - x)**2 + b * (y - x**2)**2

# Setup the solver.

problem = {'x': vertcat(x,y), 'f': f}

solver = nlpsol('production', 'ipopt', problem)

# Call the solver.

result = solver()

# Show the solution.

print()

print(result['x'])
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§ 5.2 Solution of Example 2.2 (Rosenbrock) using CasADi (Opti Interface-Based)

CasADi offers the Opti interface, which allows a simplified description and solution of optimization
problems.

# This code solves an unconstrained optimization problem with the Rosenbrock

# function using CasADi's python bindings, and CasADi's Opti interface for

# modeling of (un)constrained optimization problems.

# Resolve the dependencies.

from casadi import *

# Create an instance of the Opti interface.

opti = Opti()

# Create a 1-by-1 optimization variable (termed 'x') and another 1-by-1

# optimization variable (termed 'y').

x = opti.variable()

y = opti.variable()

# Set the fixed problem parameters.

a = opti.parameter()

b = opti.parameter()

opti.set_value(a, 1)

opti.set_value(b, 100)

# Setup the objective.

f = (a - x)**2 + b * (y - x**2)**2

opti.minimize(f)

# Setup the solver.

opti.solver('ipopt')

# Call the solver.

result = opti.solve()

# Show the solution.

print()

print(result.value(x), result.value(y))
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§ 5.3 Solution of Example 2.3 (Airplane) using CasADi (Problem-Based)

Apparently CasADi has no interface for solving least-squares problems. Therefore, we resort to
treating the problem as a generic unconstrained optimization problem. Consequently — in contrast to
using a dedicated least-squares solver — we have to implement the objective 𝑓 (𝑥) = 1

2
∑𝑀

𝑖=1 [𝑟𝑖 (𝑥)]2
instead of the residual function 𝑟 (𝑥).

# This code solves a parameter estimation problem for a given model, based on a

# set of measurement pairs, using CasADi's python bindings for modeling of

# (un)constrained optimization problems.

# Resolve the dependencies.

from casadi import *

import matplotlib.pyplot as plt

# Create the unknown parameters as optimization variables.

xy = MX.sym('xy', 2, 1)

# Specify the pairs of measurements.

measurements = [

([ 8, 6], 38),

([-3, -3], 220),

([ 1, 0], 222),

([ 8, -3], 300),

]

# Declare the beacon position as a variable.

beacon = MX.sym('beacon position', 2, 1)

# Specify the model function.

angle = fmod(atan2(beacon[1] - xy[1], beacon[0] - xy[0]) + 2*pi, 2*pi) * 180 / pi

model = Function('airplane', [xy, beacon], [angle], ['xy', 'beacon'], ['angle'])

# Assemble the least-squares objective function.

f = 0

for i in range(len(measurements)):

residual = model(xy = xy, beacon = measurements[i][0])['angle'] - measurements[i][1]

f = f + residual**2

f = 0.5 * f

# Setup the initial guess.

x0 = [0, 0]

# Setup the solver.

problem = {'x': xy, 'f': f}

solver = nlpsol('airplane', 'ipopt', problem)

# Call the solver.

result = solver(x0 = x0)

# Show the solution.

print()

print(result['x'])
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§ 5.4 Solution of Example 4.1 (Production) using Matlab’s Optimization Toolbox
(Solver-Based)

The classical use of Matlab’s optimization toolbox required the user to model their optimization
problem in a format suitable for the respective solver to be used. Since Example 4.1 is a linear
optimization problem, linprog is the solver of choice.

% This code solves the production example problem using Matlab's optimization

% toolbox. The problem is a linear optization problem. The solver of choice is

% linprog from Matlab's optimization toolbox, see

% https://de.mathworks.com/help/optim/ug/linprog.html.

% Setup the cost vector describing the objective c'*x.

c = [-1; -1];

% Setup the matrix A and right hand side b for the inequality constraint

% A * x <= b.

A = [50, 24; 30, 33];

b = [2400; 2100];

% Setup the matrix Aeq and right hand side beq for the (void) equality constraint

% Aeq * x = beq.

Aeq = [];

beq = [];

% Setup the lower and upper bounds.

lb = [36; 5];

ub = [];

% Call the solver.

[x, fval] = linprog(c, A, b, Aeq, beq, lb, ub);

% Show the solution.

disp(x)
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§ 5.5 Solution of Example 4.1 (Production) using Matlab’s Optimization Toolbox
(Problem-Based)

With more recent versions of Matlab’s optimization toolbox, the user may formulate their problem in
a more natural way, and independently of the solver. The solver will be picked automatically depending
on the problem characteristics.

% This code solves the production example problem using Matlab's optimization

% toolbox. The problem is modeled using the problem-based approach, which

% allows for a more natural problem formulation and automatic selection of a

% suitable solver, see

% https://de.mathworks.com/help/optim/problem-based-basics.html.

% Create a maximization-type problem.

problem = optimproblem('ObjectiveSense', 'maximize', 'Description', 'production');

% Create a 2-by-1 optimization variable (termed 'x').

x = optimvar('x', 2, 1, 'LowerBound', [36; 5]);

% Setup the objective.

problem.Objective = x(1) + x(2);

% Setup the (named) inequality constraints.

problem.Constraints.timeConstraintA = 50 * x(1) + 24 * x(2) <= 2400;

problem.Constraints.timeConstraintB = 30 * x(1) + 33 * x(2) <= 2100;

% Review the problem.

show(problem)

% Call the solver.

result = solve(problem);

% Show the solution.

disp(result.x)
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§ 5.6 Solution of Example 4.1 (Production) using scipy.optimize

Here we demonstrate the solution of Example 4.1 with scipy.optimize.linprog. We need to present
the problem in a suitable form to the solver.

# This code solves the production example problem using the scipy.optimize

# package. The problem is a linear optization problem. The solver of choice is

# scipy.optimize.linprog, see

# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html.

# Resolve the dependencies.

from scipy.optimize import linprog

# Setup the cost vector describing the objective c @ x.

c = [-1, -1]

# Setup the matrix A and right hand side b for the inequality constraint

# A @ x <= b.

A = [[50, 24], [30, 33]]

b = [2400, 2100]

# Setup the lower and upper bounds.

bounds = [(36, None), (5, None)]

# Call the solver.

result = linprog(c, A_ub = A, b_ub = b, bounds = bounds)

# Show the solution.

print(result['x'])
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§ 5.7 Solution of Example 4.1 (Production) using CasADi (Problem-Based)

CasADi provides algorithmic differentiation for user-defined functions (although this is not needed
for linear optimization problems). We demonstrate below the description of the problem in a suitable
form for CasADi’s nlpsol solver interface.

# This code solves the production example problem using CasADi's python

# bindings. The problem is a linear optization problem. For lack of a linear

# optimization solver, the solver of choice is nlpsol with ipopt, see

# https://web.casadi.org/docs/#nonlinear-programming.

# Resolve the dependencies.

from casadi import *

# Create a 2-by-1 optimization variable (termed 'x').

# SX is the class in CasADi representing matrices composed of symbolic expressions.

# There is also MX for more complex expressions.

x = SX.sym('x', 2, 1)

# Setup the objective.

f = - x[0] - x[1]

# Setup the constraint function g representing the inequality constraint

# A @ x <= b.

# DM is the class in CasADi representing matrices with numerical values.

A = DM([[50, 24], [30, 33]])

g = A @ x

# Setup the upper bound for the constraint function g.

b = DM([2400, 2100])

# Setup the lower bound for the variable x.

l = DM([36, 5])

# Setup the solver.

problem = {'x': x, 'f': f, 'g': g}

solver = nlpsol('production', 'ipopt', problem)

# Call the solver, providing the upper bounds for the inequality constraint

# function g and the lower bound for the optimization variable.

result = solver(ubg = b, lbx = l)

# Show the solution.

print()

print(result['x'])
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§ 5.8 Solution of Example 4.1 (Production) using CasADi (Opti Interface-Based)

CasADi offers the Opti interface, which allows a simplified description and solution of optimization
problems.

# This code solves the production example problem using CasADi's python

# bindings, and CasADi's Opti interface for modeling of (un)constrained

# optimization problems.

# Resolve the dependencies.

from casadi import *

# Create an instance of the Opti interface.

opti = Opti()

# Create a 2-by-1 optimization variable (termed 'x').

x = opti.variable(2)

# Setup the objective.

opti.minimize(- x[0] - x[1])

# Setup the constraint function representing the inequality constraint

# A @ x <= b.

# DM is the class in CasADi representing matrices with numerical values.

A = DM([[50, 24], [30, 33]])

b = DM([2400, 2100])

opti.subject_to(A@x <= b)

# Setup the lower bound for the variable x.

l = DM([36, 5])

opti.subject_to(x >= l)

# Setup the solver.

opti.solver('ipopt')

# Call the solver.

result = opti.solve()

# Show the solution.

print()

print(result.value(x))
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§ 5.9 Solution of Example 4.12 (Post-Office) using CasADi (Opti Interface-Based)

CasADi offers the Opti interface, which allows a simplified description and solution of optimization
problems.

# This code solves Rosenbrock's post-oddice example problem using CasADi's

# python bindings, and CasADi's Opti interface for modeling of (un)constrained

# optimization problems.

# Resolve the dependencies.

from casadi import *

# Create an instance of the Opti interface.

opti = Opti()

# Create a 3-by-1 optimization variable (termed 'x').

x = opti.variable(3)

# Setup the objective.

opti.minimize(- x[0] * x[1] * x[2])

# Setup the constraint functions.

opti.subject_to(x[0] + 2 * x[1] + 2 * x[2] - 72 <= 0)

opti.subject_to(x[0] + 2 * x[1] + 2 * x[2] >= 0)

opti.subject_to(opti.bounded(0, x, 42))

# Setup the solver.

opti.solver('ipopt')

# Call the solver.

result = opti.solve()

# Show the solution.

print()

print(result.value(x))
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